Biết \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y = F\left( x \right)\) có bao nhiêu điểm cực trị?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(F\left( x \right) = \int {f\left( x \right)dx} \Rightarrow F'\left( x \right) = f\left( x \right)\)
\(\begin{array}{l} \Rightarrow F'\left( x \right) = 0 \Leftrightarrow \frac{{x - \cos x}}{{{x^2}}} = 0\;\;\;\left( {x \ne 0} \right)\\ \Leftrightarrow g\left( x \right) = x - \cos x = 0\end{array}\)
Xét hàm số \(g\left( x \right) = x - \cos x\) ta có \(g'\left( x \right) = 1 + \sin x \ge 0\,\,\forall x \in \mathbb{R}\).
Do đó hàm số \(g\left( x \right)\) đồng biến trên \(\mathbb{R} \Rightarrow \) Phương trình \(g\left( x \right) = 0\) có nghiệm duy nhất.
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Trường Toản