Cho hình chóp \(S.ABC\)có đáy là \(\Delta ABC\) vuông cân ở \(B,\,\)\(AC = a\sqrt 2 ,\,\)\(SA \bot \left( {ABC} \right),\) \(SA = a.\) Gọi \(G\) là trọng tâm của \(\Delta SBC\), \(mp\left( \alpha \right)\) đi qua \(AG\) và song song với \(BC\) chia khối chóp thành hai phần. Gọi \(V\)là thể tích của khối đa diện không chứa đỉnh \(S\). Tính \(V.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrong \(\left( {SBC} \right)\) qua \(G\) kẻ \(MN//BC\,\,\left( {M \in SB,\,\,N \in SC} \right)\). Khi đó mặt phẳng đi qua \(AG\) và song song với \(BC\) chính là mặt phẳng \(\left( {AMN} \right)\). Mặt phẳng này chia khối chóp thành 2 khối \(S.AMN\) và \(AMNBC\).
Gọi \(H\) là trung điểm của \(BC.\)
Vì \(MN//BC \Rightarrow \) Theo định lí Ta-lét ta có: \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{2}{3}\left( { = \frac{{SG}}{{SH}}} \right)\).
\(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{S.AMN}} = \frac{4}{9}{V_{S.ABC}}\).
Mà \({V_{S.AMN}} + {V_{AMNBC}} = {V_{S.ABC}} \Rightarrow {V_{AMNBC}} = \frac{5}{9}{V_{S.ABC}} = V\).
Ta có \(\Delta ABC\) vuông cân tại \(B \Rightarrow AB = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}{a^2}\).
\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{1}{3}a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{6}\).
Vậy \(V = \frac{5}{9}.\frac{{{a^3}}}{6} = \frac{{5{a^3}}}{{54}}\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Trường Toản