Có tất cả bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{3}^{2x}}-{{4.3}^{x+1}}+27 \right]\left[ {{\log }_{3}}\left( x+1 \right)+x-3 \right]\le 0\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(x>-1\)
Bất phương trình tương đương \(\left\{ \begin{align} & {{3}^{2x}}-{{4.3}^{x+1}}+27\ge 0 \\ & {{\log }_{3}}\left( x+1 \right)+x-3\le 0 \\ \end{align} \right.\) hoặc \(\left\{ \begin{align} & {{3}^{2x}}-{{4.3}^{x+1}}+27\le 0 \\ & {{\log }_{3}}\left( x+1 \right)+x-3\ge 0 \\ \end{align} \right.\).
- Ta xét hệ bất phương trình đầu tiên \(\left\{ \begin{align} & {{3}^{2x}}-{{12.3}^{x}}+27\ge 0\,\,\,\,\,\,\,\left( 1 \right) \\ & {{\log }_{3}}\left( x+1 \right)+x-3\le 0\,\,\left( 2 \right) \\ \end{align} \right.\)
\(\left( 1 \right)\Leftrightarrow {{3}^{x}}\le 3\vee {{3}^{x}}\ge 9\Leftrightarrow x\le 1\vee x\ge 2\).
Xét hàm \(f\left( x \right)={{\log }_{3}}\left( x+1 \right)+x-3\) với \(x\in \left( -1;1 \right]\cup \left[ 2;+\infty \right)\)
\(\Rightarrow f'\left( x \right)=\frac{1}{\left( x+1 \right)\ln 3}+1>0,\forall x\in \left( -1;1 \right]\cup \left[ 2;+\infty \right)\)
Khi đó bất phương trình (2) có ba nghiệm nguyên là \(x\in \left\{ 0;1;2 \right\}\).
- Ta xét hệ bất phương trình còn lại \(\left\{ \begin{align} & {{3}^{2x}}-{{12.3}^{x}}+27\le 0\,\,\,\,\,\,\,\left( 3 \right) \\ & {{\log }_{3}}\left( x+1 \right)+x-3\ge 0\,\,\,\left( 4 \right) \\ \end{align} \right.\)
Ta có \(\left( 3 \right)\Leftrightarrow 3\le {{3}^{x}}\le 9\Leftrightarrow 1\le x\le 2\)
Tương tự, xét hàm \(f\left( x \right)={{\log }_{3}}\left( x+1 \right)+x-3\) với \(x\in \left[ 1;2 \right]\)
\(\Rightarrow f'\left( x \right)=\frac{1}{\left( x+1 \right)\ln 3}+1>0,\forall x\in \left[ 1;2 \right]\)
Nhận thấy chỉ có \(f\left( 2 \right)=0\) nên bất phương trình (4) chỉ có nghiệm nguyên là \(x=2\).
Cuối cùng bất phương trình có ba nghiệm nguyên là \(x\in \left\{ 0;1;2 \right\}\).
Chọn D
Đề thi thử Tốt nghiệp THPT môn Toán năm 2023-2024
Trường THPT Ngô Quyền