Cho lăng trụ \(ABC.A'B'C'\) có các mặt bên đều là hình vuông cạnh \(a.\) Khoảng cách giữa hai đường thẳng \(A'B\) và \(B'C'\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo ABB’A’, BCC’B’ là hình vuông nên \(\left\{ \begin{array}{l}BB' \bot AB\\BB' \bot BC\end{array} \right. \Rightarrow BB' \bot \left( {ABC} \right)\).
Lại có tất cả các mặt bên là hình vuông cạnh a \( \Rightarrow \Delta ABC\) và \(\Delta A'B'C'\) là các tam giác đều cạnh \(a\).
\( \Rightarrow \) Lăng trụ \(ABC.A'B'C'\) là lăng trụ đều có tất cả các cạnh bằng \(a\).
Ta có \(BC//B'C' \Leftrightarrow B'C'//\left( {A'BC} \right)\) , do đó
\(d\left( {A'B;B'C'} \right) = d\left( {B'C';\left( {A'BC} \right)} \right) = d\left( {C';\left( {A'BC} \right)} \right)\).
Lại có \({V_{B.A'CC'}} = \frac{1}{3}d\left( {C';\left( {A'BC} \right)} \right).{S_{A'BC}} \Rightarrow d\left( {C';\left( {A'BC} \right)} \right) = \frac{{3{V_{B.A'CC'}}}}{{{S_{A'BC}}}}\).
Gọi \(H\) là trung điểm của \(AC \Rightarrow BH \bot AC\) và \(BH = \frac{{a\sqrt 3 }}{2}\).
Ta có \(\left\{ \begin{array}{l}BH \bot AC\\BH \bot AA'\,\,\left( {AA' \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BH \bot \left( {ACC'A'} \right) \Rightarrow BH \bot \left( {A'CC'} \right)\).
\({S_{\Delta A'CC'}} = \frac{1}{2}A'C'.CC' = \frac{{{a^2}}}{2} \Rightarrow {V_{B.A'CC'}} = \frac{1}{3}BH.{S_{\Delta A'CC'}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{{12}}\).
Áp dụng định lí Pytago trong tam giác vuông ABA’ và ACA’ ta tính được \(A'B = A'C = a\sqrt 2 \).
\( \Rightarrow \Delta A'BC\) cân tại \(A'\) . Gọi \(K\) là trung điểm của \(BC \Rightarrow A'K \bot BC\).
Xét tam giác vuông \(A'BK\) ta có: \(A'K = \sqrt {A'{B^2} - B{K^2}} = \sqrt {2{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 7 }}{2}\).
\( \Rightarrow {S_{A'BC}} = \frac{1}{2}.A'K.BC = \frac{1}{2}.\frac{{a\sqrt 7 }}{2}.a = \frac{{{a^2}\sqrt 7 }}{4}\).
Vậy \(d\left( {C';\left( {A'BC} \right)} \right) = \frac{{3{V_{B.A'CC'}}}}{{{S_{A'BC}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}\sqrt 7 }}{4}}} = \frac{{a\sqrt {21} }}{7}\).
Chọn C.