Biết \(\left( {a;\,b} \right)\) là tập nghiệm của bất phương trình \(\left( {x - 5} \right)\left( {\log x + 1} \right) < 0.\) Tính \(10a + b = ?\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(x > 0.\)
\(\left( {x - 5} \right)\left( {\log x + 1} \right) < 0 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x - 5 > 0\\\log x + 1 < 0\end{array} \right.\\\left\{ \begin{array}{l}x - 5 < 0\\\log x + 1 > 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 5\\0 < x < {10^{ - 1}}\end{array} \right.\\\left\{ \begin{array}{l}x < 5\\x > {10^{ - 1}}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 5\\0 < x < \frac{1}{{10}}\end{array} \right.\\\frac{1}{{10}} < x < 5\end{array} \right. \Leftrightarrow \frac{1}{{10}} < x < 5.\)
Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là: \(S = \left( {\frac{1}{{10}};\;5} \right).\)
\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{{10}}\\b = 5\end{array} \right. \Rightarrow 10a + b = 10.\frac{1}{{10}} + 5 = 6.\)
Chọn C.