ADMICRO
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy \(\left( {ABCD} \right)\). Tính theo \(a\) diện tích mặt cầu ngoại tiếp khối chóp \(S.ABCD\).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiBán kính đường tròn ngoại tiếp hình vuông \(ABCD\) cạnh \(a:\;\;R = \frac{{a\sqrt 2 }}{2}.\)
Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(R = \sqrt {\frac{{{h^2}}}{4} + R_{day}^2} = \sqrt {{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = a\sqrt 2 \).
Vậy diện tích mặt cầu là \(S = 4\pi {R^2} = 4\pi {\left( {a\sqrt 2 } \right)^2} = 8\pi {a^2}\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK