ADMICRO
Cho tứ diện \(ABCD\) có \(AC = 3a;\,\,BD = 4a.\) Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(AC\) vuông góc với \(BD\) . Tính \(MN\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi P là trung điểm của AB.
Ta có:
\(MP\) là đường trung bình của tam giác \(ABD \Rightarrow MP//BD\) và \(MN = \frac{1}{2}BD = 2a\)
\(NP\) là đường trung bình của tam giác \(ABC \Rightarrow NP//AC\) và \(NP = \frac{1}{2}AC = \frac{{3a}}{2}\).
Lại có \(AC \bot BD \Rightarrow MP \bot NP \Rightarrow \Delta MNP\) vuông tại \(P\).
Áp dụng định lí Pytago trong tam giác vuông \(MNP\) ta có:
\(MN = \sqrt {M{P^2} + N{P^2}} = \sqrt {4{a^2} + \frac{{9{a^2}}}{4}} = \frac{{5a}}{2}\).
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK