Với giá trị nào của tham số \(m\) thì đường thẳng \(d:2x - y + m = 0\) tiếp xúc với đồ thị hàm số \(y = \frac{{ - 2x - 4}}{{x + 1}}?\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}\left( d \right):\,\,2x - y + m = 0 \Leftrightarrow y = 2x + m \Rightarrow y' = 2\\\left( C \right):\,\,y = \frac{{ - 2x - 4}}{{x + 1}}\,\,\left( {x \ne - 1} \right) \Rightarrow y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)
Để \(\left( d \right)\) và \(\left( C \right)\) tiếp xúc với nhau \( \Leftrightarrow \) hệ phương trình \(\left\{ \begin{array}{l}2x + m = \frac{{ - 2x - 4}}{{x + 1}}\,\,\left( 1 \right)\\2 = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\) có nghiệm \(x \ne - 1\).
Ta có :\(\left( 2 \right) \Leftrightarrow {\left( {x + 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x + 1 = 1\\x + 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\,\,\left( {tm} \right)\)
Thay \(x = 0\) vào phương trình (1) ta có : \(m = - 4\)
Thay \(x = - 2\) vào phương trình (1) ta có : \( - 4 + m = 0 \Leftrightarrow m = 4\).
Vậy \(m = \pm 4\).
Chọn A.