Cho hàm số \(y = {x^4} - 2\left( {1 - {m^2}} \right){x^2} + m + 1.\) Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích là lớn nhất?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTXĐ : \(D = \mathbb{R}\). Ta có \(y' = 4{x^3} - 4\left( {1 - {m^2}} \right)x = 0 \Leftrightarrow 4x\left( {{x^2} + {m^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = 1 - {m^2}\end{array} \right.\)
Để hàm số đã cho có cực đại, cực tiểu (tức là có 3 cực trị phân biệt) thì phương trình \(y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow 1 - {m^2} > 0 \Leftrightarrow - 1 < m < 1\).
Khi đó \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = m + 1 \Rightarrow A\left( {0;m + 1} \right) \in Oy\\x = \sqrt {1 - {m^2}} \Rightarrow y = - {m^4} + 2{m^2} + m \Rightarrow B\left( {\sqrt {1 - {m^2}} ; - {m^4} + 2{m^2} + m} \right)\\x = - \sqrt {1 - {m^2}} \Rightarrow y = - {m^4} + 2{m^2} + m \Rightarrow C\left( { - \sqrt {1 - {m^2}} ; - {m^4} + 2{m^2} + m} \right)\end{array} \right.\).
Do \(A \in Oy,\,\,B,C\) đối xứng nhau qua Ox, do đó tam giác \(ABC\) cân tại A.
Gọi \(H\) là trung điểm của \(BC \Rightarrow H\left( {0; - {m^4} + 2{m^2} + m} \right)\).
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}AH = \left| { - {m^4} + 2{m^2} + m - m - 1} \right| = \left| { - {m^4} + 2{m^2} - 1} \right| = {\left( {1 - {m^2}} \right)^2}\\BC = 2\sqrt {1 - {m^2}} \end{array} \right\}\\ \Rightarrow {S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}{\left( {1 - {m^2}} \right)^2}.2\sqrt {1 - {m^2}} = {\sqrt {1 - {m^2}} ^5}\end{array}\)
Ta có \({m^2} \ge 0 \Leftrightarrow 1 - {m^2} \le 1 \Leftrightarrow {S_{ABC}} \le 1\). Dấu “=” xảy ra \( \Leftrightarrow m = 0\).
Vậy \({S_{ABC}}\) lớn nhất bằng \(1\) khi và chỉ khi \(m = 0\).
Chọn B.