Cho khối chóp tứ giác đều \(S.ABCD\) có thể tích bằng \({a^3}\) và đáy \(ABCD\) là hình vuông cạnh \(a.\) Tính \(\cos \alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi O là tâm của hình vuông ABCD, I là trung điểm của BC.
Ta có: \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{a^2}.SO = {a^3} \Rightarrow SO = 3a\)
Do \(\left\{ \begin{array}{l}OI \bot BC\\SI \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SOI} \right)\)
Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\\BC \bot \left( {SOI} \right)\\\left( {SOI} \right) \cap \left( {SBC} \right) = SI\\\left( {SOI} \right) \cap \left( {ABCD} \right) = OI\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \angle \left( {OI;SI} \right) = \angle SIO\\ \Rightarrow \cos \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \cos \angle SIO = \frac{{OI}}{{SI}} = \frac{{OI}}{{\sqrt {O{I^2} + S{O^2}} }} = \frac{{\frac{a}{2}}}{{\sqrt {\frac{{{a^2}}}{4} + 9{a^2}} }} = \frac{{\frac{a}{2}}}{{\frac{{a\sqrt {37} }}{2}}} = \frac{1}{{\sqrt {37} }}.\end{array}\)
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Nguyên Hãn