ADMICRO
Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) thuộc (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiGắn hệ trục Oxy như hình vẽ
Khối cầu S(O;R) chứa một đường tròn lớn là \(\left( C \right):{x^2} + {y^2} = {R^2}\)
Dựa vào hình vẽ, thể tích cần tính là
\(V = 2\pi \int\limits_{\frac{R}{2}}^R {\left( {{R^2} - {x^2}} \right)} dx = 2\pi \left( {{R^2}x - \frac{{{x^3}}}{2}} \right)_{\frac{R}{2}}^R = \frac{{5\pi {R^3}}}{{12}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK