ADMICRO
Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \), tính \(I = \int\limits_0^\pi {xf({x^2}} )dx\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 6
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai\(I = \frac{1}{2}\int\limits_0^\pi {f({x^2})d{x^2}} = \frac{1}{2}\int\limits_0^{{\pi ^2}} {f(t)dt = \frac{1}{2}} \int\limits_0^{{\pi ^2}} {f(x)dx = 1009} \)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK