Trắc nghiệm Hàm số lũy thừa Toán Lớp 12
-
Câu 1:
Cho x = 2000! . Giá trị của biểu thức \(A\; = \;\frac{1}{{{{\log }_2}x}} + \frac{1}{{{{\log }_3}x}} + ... + \frac{1}{{{{\log }_{2000}}x}}\) là:
A. 1
B. - 1
C. 1000
D. 2000
-
Câu 2:
Điều kiện xác định của biểu thức \(T\; = \lg \sqrt {\left( {{x^2} - 4} \right)\left( {{x^2} - 6x + 9} \right)} \) là
A. \(x \in \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\)
B. x > 3
C. \(x \in \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\)
D. \(x \in \left( { - \infty ; - 2} \right) \cup \left( {2;3} \right) \cup \left( {3; + \infty } \right)\)
-
Câu 3:
Với giá trị nào của x thì biểu thức: f(x) = log5( x3-x2-2x) xác định?
A. 0 < x < 1.
B. x > 1
C. \(x \in \left( { - 1;0} \right) \cup \left( {2; + \infty } \right)\)
D. \(x \in \left( { 0;2} \right) \cup \left( {4; + \infty } \right)\)
-
Câu 4:
Với giá trị nào của x thì biểu thức: f( x) = log6( 2x- x2) xác định?
A. 0 < x < 2.
B. x > 2.
C. -1 < x < 1.
D. x < 3.
-
Câu 5:
Với giá trị nào của x thì biểu thức \(A\; = \;{\log _{\frac{1}{2}}}\frac{{x - 1}}{{3 + x}}\) xác định?
A. -3 ≤ x ≤ 1.
B. \(x \in R\backslash \left[ { - 3;1} \right]\)
C. \(x \in R\backslash \left( { - 3;1} \right)\)
D. -3< x < 1.
-
Câu 6:
Với giá trị nào của x thì biểu thức C = ln( 4- x2) xác định?
A. -2 < x < 2
B. -2 ≤ x ≤ 2.
C. x > 2
D. x < -2
-
Câu 7:
Trong các biểu thức sau biểu thức nào không có nghĩa
A. (-2016)0.
B. ( -2016)2016.
C. 0- 2016.
D. ( -2016) -2016 .
-
Câu 8:
Với giá trị nào của thì đẳng thức \(\sqrt[4]{{{x^4}}} = \frac{1}{{\left| x \right|}}\) đúng
A. x ≠ 0
B. x ≥ 0
C. x = ± 1
D. Không có giá trị nào
-
Câu 9:
Tìm biểu thức không có nghĩa trong các biểu thức sau:
A. ( -3) -4.
B. ( -3) -1/3.
C. 04.
D. \({\left( {\frac{1}{{{2^{ - 3}}}}} \right)^0}\)
-
Câu 10:
Tìm x để biểu thức \({\left( {{x^2} + x + 1} \right)^{ - \frac{2}{3}}}\) có nghĩa:
A. R
B. Không tồn tại x
C. x > 1
D. x khác 0
-
Câu 11:
Tìm tập xác định D của hàm số \(y = {\left( {{x^2} - 6x + 8} \right)^{\sqrt 2 }}\)
A. D = R
B. D = [4; +∞) ∪ (-∞; 2]
C. D = (4; +∞) ∪ (-∞; 2)
D. D = [2; 4]
-
Câu 12:
Tìm x để biểu thức (2x - 1)– 2 có nghĩa:
A. \(x \ne \frac{1}{2}\)
B. \(x > \frac{1}{2}\)
C. \(\frac{1}{2} < x < 2\)
D. x < 2
-
Câu 13:
Tìm tập xác định D của hàm số y = ( x3 - 8) -100
A. D = ( 2; + ∞)
B. D = R \ {2}
C. D = ( -∞; 2)
D. D = R \ ( -2; 2)
-
Câu 14:
Tìm tập xác định D của hàm số y = (x2 - 3x + 2)100
A. D = [1; 2]
B. D = [2; +∞) ∪ (-∞; 1]
C. D = R
D. D = (1; 2)
-
Câu 15:
Cho \(\alpha, \beta\) là các số thực. Đồ thị các hàm số \(y=x^{\alpha}, y=x^{\beta}\) , trên khoảng \((0 ;+\infty)\) được cho trong hình vẽ bên. Khẳng định nào sau đây là đúng?
A. \(0<\beta<1<\alpha\)
B. \(\beta<0<1<\alpha\)
C. \(0<\alpha<1<\beta\)
D. \(\alpha<0<1<\beta\)
-
Câu 16:
Cho hàm số \(y=x^{-\sqrt{2}}\) . Mệnh đề nào sau đây là sai?
A. Đồ thị hàm số không cắt trục hoành.
B. Hàm số nghịch biến trên khoảng \((0 ;+\infty)\)
C. Hàm số có tập xác định là \((0 ;+\infty)\)
D. Đồ thị hàm số không có tiệm cận.
-
Câu 17:
Cho hàm số \(y=x^{e-3}\) trong các kết luận sau kết luận nào sai?
A. Đồ thị hàm số nhận Ox, Oy làm hai tiệm cận.
B. Đồ thị hàm số luôn đi qua M(1;1)
C. Hàm số luôn đồng biến trên \((0,+\infty)\)
D. Tập xác định của hàm số là \(D=(0,+\infty)\)
-
Câu 18:
Cho hàm số\(y=x^{-\sqrt{2017}}\). Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A. Có một tiệm cận ngang và một tiệm cận đứng.
B. Không có tiệm cận ngang và có một tiệm cận đứng.
C. Có một tiệm cận ngang và không có tiệm cận đứng.
D. Không có tiệm cận
-
Câu 19:
Hình vẽ bên là đồ thị các hàm số \(y=x^{a}, y=x^{b}, y=x^{c} \text { trên miền }(0 ;+\infty)\). Hỏi trong các số a , b , c số nào nhận giá trị trong khoảng (0; 1) ?
A. Số a
B. Số a và c
C. Số b
D. Số c
-
Câu 20:
Hàm số nào trong hàm số sau đây có đồ thị phù hợp với hình vẽ bên?
A. \(y=x^3\)
B. \(y=x^4\)
C. \(y=x^\frac{1}{5}\)
D. \(y=\sqrt x\)
-
Câu 21:
Cho hai số thực x , y thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadIhadaahaaadbeqaaiaaikdaaaWccqGH % RaWkcaWG5bWaaWbaaWqabeaacaaIYaaaaaWcbeaakmaabmaabaGaam % iEaiabgUcaRiaadMhaaiaawIcacaGLPaaacqGHLjYScaaIXaaaaa!44A8! {\log _{{x^2} + {y^2}}}\left( {x + y} \right) \ge 1\). Tìm giá trị lớn nhất của biểu thức S = x+2y.
A. 3
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI1aaaleqaaaaa!36CE! \sqrt 5 \)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIZaGaey4kaSYaaOaaaeaacaaIXaGaaGimaaWcbeaaaOqaaiaaikda % aaaaaa!39F9! \frac{{3 + \sqrt {10} }}{2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI1aGaey4kaSYaaOaaaeaacaaIXaGaaGimaaWcbeaaaOqaaiaaikda % aaaaaa!39FB! \frac{{5 + \sqrt {10} }}{2}\)
-
Câu 22:
Cho hai số thực dương a,b thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaW % baaSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOm % aaaakiabg6da+iaaigdaaaa!3EE1! {a^2} + {b^2} > 1\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai % 4BaiaacEgadaWgaaWcbaGaamyyamaaCaaameqabaGaaGOmaaaaliab % gUcaRiaadkgadaahaaadbeqaaiaaikdaaaaaleqaaOWaaeWaaeaaca % WGHbGaey4kaSIaamOyaaGaayjkaiaawMcaaiabgwMiZkaaigdaaaa!46E1! {\log _{{a^2} + {b^2}}}\left( {a + b} \right) \ge 1\). Tìm giá trị lớn nhất của biểu thức P = 2a + 4b - 3.
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaam % aakaaabaGaaGymaiaaicdaaSqabaaakeaacaaIYaaaaaaa!3AF0! \frac{{\sqrt {10} }}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaai % aaigdacaaIWaaaleqaaaaa!3A1A! \sqrt {10} \)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai % aaikdadaGcaaqaaiaaigdacaaIWaaaleqaaaGcbaGaaGOmaaaaaaa!3BAC! \frac{{2\sqrt {10} }}{2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCsPYR2xbba9asFD0dXdHaVhbbf9v8qqaqFr0xc9pk % 0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai % aaigdaaeaadaGcaaqaaiaaigdacaaIWaaaleqaaaaaaaa!3AE5! \frac{1}{{\sqrt {10} }}\)
-
Câu 23:
Cho hai số thực x,y thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadIhadaahaaadbeqaaiaaikdaaaWccqGH % RaWkcaWG5bWaaWbaaWqabeaacaaIYaaaaSGaey4kaSIaaGOmaaqaba % GcdaqadaqaaiaadIhacqGHRaWkcaWG5bGaey4kaSIaaG4maaGaayjk % aiaawMcaaiabgwMiZkaaigdaaaa!47E5! {\log _{{x^2} + {y^2} + 2}}\left( {x + y + 3} \right) \ge 1\). Tìm giá trị lớn nhất của biểu thức S = 3x +4y -6.
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI1aWaaOaaaeaacaaI2aaaleqaaOGaeyOeI0IaaGyoaaqaaiaaikda % aaaaaa!3A14! \frac{{5\sqrt 6 - 9}}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI1aWaaOaaaeaacaaI2aaaleqaaOGaeyOeI0IaaG4maaqaaiaaikda % aaaaaa!3A0E! \frac{{5\sqrt 6 - 3}}{2}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI1aWaaOaaaeaacaaIZaaaleqaaOGaeyOeI0IaaGynaaqaaiaaikda % aaaaaa!3A0D! \frac{{5\sqrt 3 - 5}}{2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI1aWaaOaaaeaacaaI2aaaleqaaOGaeyOeI0IaaGynaaqaaiaaikda % aaaaaa!3A10! \frac{{5\sqrt 6 - 5}}{2}\)
-
Câu 24:
Cho hai số thực x,y thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikda % aaGccqGH+aGpcaaIXaaaaa!3C7A! {x^2} + {y^2} > 1\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadIhadaahaaadbeqaaiaaikdaaaWccqGH % RaWkcaaIYaGaamyEamaaCaaameqabaGaaGOmaaaaaSqabaGcdaqada % qaaiaaikdacaWG4bGaey4kaSIaamyEaaGaayjkaiaawMcaaiabgwMi % Zkaaigdaaaa!4620! {\log _{{x^2} + 2{y^2}}}\left( {2x + y} \right) \ge 1\). Biết giá trị lớn nhất của P = x+y là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGHbGaey4kaSIaamOyamaakaaabaGaaGOnaaWcbeaaaOqaaiaadoga % aaaaaa!3A80! \frac{{a + b\sqrt 6 }}{c}\) với a,b,c là các số nguyên dương và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGHbaabaGaam4yaaaaaaa!37D2! \frac{a}{c}\) tối giản. Tính S = a+ b+ c
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIXaGaaG4naaWcbeaaaaa!378B! \sqrt {17} \)
B. \(\sqrt {15}\)
C. \(\sqrt {19}\)
D. 12
-
Câu 25:
Số thực a nhỏ nhất để bất đẳng thức \(ln(1+x)\ge x - ax^2\) luôn đúng với mọi số thực dương x là \(\frac{m}{n}\) với m,n là các số nguyên dương và \(\frac{m}{n}\) tối giản. Tính
T = 2m+3n.
A. T = 5
B. T = 7
C. T = 8
D. T = 11
-
Câu 26:
Tất cả các giá trị thực của m để bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaka % aabaGaamiEaaWcbeaakiabgUcaRmaakaaabaGaamiEaiabgUcaRiaa % igdacaaIYaaaleqaaOGaeyizImQaamyBaiaac6caciGGSbGaai4Bai % aacEgadaWgaaWcbaGaaGynaiabgkHiTmaakaaabaGaaGinaiabgkHi % TiaadIhaaWqabaaaleqaaOGaaG4maaaa!4807! x\sqrt x + \sqrt {x + 12} \le m.{\log _{5 - \sqrt {4 - x} }}3\) có nghiệm là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg6 % da+iaaikdadaGcaaqaaiaaiodaaSqabaaaaa!3982! m > 2\sqrt 3 \)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw % MiZkaaikdadaGcaaqaaiaaiodaaSqabaaaaa!3A40! m \ge 2\sqrt 3 \)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg6 % da+iaaigdacaaIYaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaioda % aeqaaOGaaGynaaaa!3DE7! m > 12{\log _3}5\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgY % da8iaad2gacqGH8aapcaaIXaGaaGOmaiGacYgacaGGVbGaai4zamaa % BaaaleaacaaIYaaabeaakiaaiwdaaaa!3FA2! 2 < m < 12{\log _2}5\)
-
Câu 27:
Trong tất cả các cặp (x;y) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadIhadaahaaadbeqaaiaaikdaaaWccqGH % RaWkcaWG5bWaaWbaaWqabeaacaaIYaaaaSGaey4kaSIaaGOmaaqaba % GcdaqadaqaaiaaisdacaWG4bGaey4kaSIaaGinaiaadMhacqGHsisl % caaI0aaacaGLOaGaayzkaaGaeyyzImRaaGymaaaa!496D! {\log _{{x^2} + {y^2} + 2}}\left( {4x + 4y - 4} \right) \ge 1\). Tìm m để tồn tại duy nhất cặp (x,y) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaIYaGaamiEaiabgkHiTiaaikdacaWG5bGaey4kaS % IaaGOmaiabgkHiTiaad2gacqGH9aqpcaaIWaaaaa!4536! {x^2} + {y^2} + 2x - 2y + 2 - m = 0\).
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaigdacaaIWaaaleqaaOGaeyOeI0YaaOaaaeaacaaIYaaa % leqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa!3BCE! {\left( {\sqrt {10} - \sqrt 2 } \right)^2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIXaGaaGimaaWcbeaakiabgkHiTmaakaaabaGaaGOmaaWcbeaaaaa!3951! \sqrt {10} - \sqrt 2 \) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIXaGaaGimaaWcbeaakiabgkHiTmaakaaabaGaaGOmaaWcbeaaaaa!3951! \sqrt {10} + \sqrt 2 \)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaigdacaaIWaaaleqaaOGaeyOeI0YaaOaaaeaacaaIYaaa % leqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa!3BCD! {\left( {\sqrt {10} - \sqrt 2 } \right)^2}\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaigdacaaIWaaaleqaaOGaeyOeI0YaaOaaaeaacaaIYaaa % leqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa!3BCD! {\left( {\sqrt {10} + \sqrt 2 } \right)^2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIXaGaaGimaaWcbeaakiabgkHiTmaakaaabaGaaGOmaaWcbeaaaaa!3952! \sqrt {10} - \sqrt 2 \)
-
Câu 28:
Trong các nghiệm ( x ; y ) thỏa mãn bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaadIhadaahaaadbeqaaiaaikdaaaWccqGH % RaWkcaaIYaGaamyEamaaCaaameqabaGaaGOmaaaaaSqabaGccaGGOa % GaaGOmaiaadIhacqGHRaWkcaWG5bGaaiykaiabgwMiZkaaigdaaaa!45EF! {\log _{{x^2} + 2{y^2}}}(2x + y) \ge 1\). Giá trị lớn nhất của biểu thức T = 2x + y bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aI5aaabaGaaGinaaaaaaa!3784! \frac{9}{4}\)
B. \(\frac{9}{2}\)
C. \(\frac{9}{8}\)
D. 9
-
Câu 29:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaWaaWbaaSqabeaacaWG4bWaaWbaaWqabeaacaaIYaaaaSGaeyOe % I0IaaGinaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGUaGaci % iBaiaac6gacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyipaWJaaGim % aaaa!43F9! \left( {{2^{{x^2} - 4}} - 1} \right).\ln {x^2} < 0\) là
A. [1 ; 2]
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcaaIYaGaai4oaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH % QicYcaGGOaGaaGymaiaacUdacaaIYaGaaiykaaaa!40BC! \left( { - 2; - 1} \right) \cup (1;2)\)
C. {1;2}
D. (1;2)
-
Câu 30:
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg % gacaGG4bWaaiWaaeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaG4m % aaqabaGccaWG4bGaai4oaiGacYgacaGGVbGaai4zamaaBaaaleaada % WcaaqaaiaaigdaaeaacaaIYaaaaaqabaGccaWG4baacaGL7bGaayzF % aaGaeyipaWJaaG4maaaa!47C3! \max \left\{ {{{\log }_3}x;{{\log }_{\frac{1}{2}}}x} \right\} < 3\) có tập nghiệm là.
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislqaaaaaaaaaWdbiabg6HiLkaacUdacaaIYaGaaG4naaWdaiaa % wIcacaGLPaaaaaa!3C45! \left( { - \infty ;27} \right)\)
B. (8;27)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa % aaaaaaaaWdbmaalaaabaGaaGymaaqaaiaaiIdaaaGaai4oaiaaikda % caaI3aaapaGaayjkaiaawMcaaaaa!3B74! \left( {\frac{1}{8};27} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa % aaaaaaaaWdbiaaikdacaaI3aGaai4oaiabgUcaRiabg6HiLcWdaiaa % wIcacaGLPaaaaaa!3C3A! \left( {27; + \infty } \right)\)
-
Câu 31:
Tìm tập xác định hàm số sau \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakaaabaGaciiBaiaa % c+gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabe % aakmaalaaabaGaaG4maiabgkHiTiaaikdacaqG4bGaeyOeI0IaamiE % amaaCaaaleqabaGaaGOmaaaaaOqaaiaadIhacqGHRaWkcaaIXaaaaa % Wcbeaaaaa!47FA! f\left( x \right) = \sqrt {{{\log }_{\frac{1}{2}}}\frac{{3 - 2{\rm{x}} - {x^2}}}{{x + 1}}} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 % da9maajadabaGaeyOeI0IaeyOhIuQaai4oaiaabccacaaMc8+aaSaa % aeaacqGHsislcaaIZaGaeyOeI0YaaOaaaeaacaaIXaGaaG4naaWcbe % aaaOqaaiaaikdaaaaacaGLOaGaayzxaaGaeyOkIG8aaKGeaeaadaWc % aaqaaiabgkHiTiaaiodacqGHRaWkdaGcaaqaaiaaigdacaaI3aaale % qaaaGcbaGaaGOmaaaacaGG7aGaey4kaSIaeyOhIukacaGLBbGaayzk % aaaaaa!4F81! D = \left( { - \infty ;{\rm{ }}\,\frac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2}; + \infty } \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 % da9maabmaabaGaeyOeI0IaeyOhIuQaai4oaiabgkHiTiaaiodaaiaa % wIcacaGLPaaacqGHQicYdaqadaqaaiaaigdacaGG7aGaaGPaVlabgU % caRiabg6HiLcGaayjkaiaawMcaaaaa!4693! D = \left( { - \infty ; - 3} \right) \cup \left( {1;\, + \infty } \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 % da9maabmaabaWaaSaaaeaacqGHsislcaaIZaGaeyOeI0YaaOaaaeaa % caaIXaGaaG4naaWcbeaaaOqaaiaaikdaaaGaai4oaiabgkHiTiaaio % daaiaawIcacaGLPaaacqGHQicYdaqadaqaamaalaaabaGaeyOeI0Ia % aG4maiabgUcaRmaakaaabaGaaGymaiaaiEdaaSqabaaakeaacaaIYa % aaaiaacUdacaqGGaGaaGymaaGaayjkaiaawMcaaaaa!4AF7! D = \left( {\frac{{ - 3 - \sqrt {17} }}{2}; - 3} \right) \cup \left( {\frac{{ - 3 + \sqrt {17} }}{2};{\rm{ }}1} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 % da9maajibabaWaaSaaaeaacqGHsislcaaIZaGaeyOeI0YaaOaaaeaa % caaIXaGaaG4naaWcbeaaaOqaaiaaikdaaaGaai4oaiabgkHiTiaaio % daaiaawUfacaGLPaaacqGHQicYdaqcsaqaamaalaaabaGaeyOeI0Ia % aG4maiabgUcaRmaakaaabaGaaGymaiaaiEdaaSqabaaakeaacaaIYa % aaaiaacUdacaqGGaGaaGymaaGaay5waiaawMcaaaaa!4B8B! D = \left[ {\frac{{ - 3 - \sqrt {17} }}{2}; - 3} \right) \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2};{\rm{ }}1} \right)\)
-
Câu 32:
Gọi \(S_1,S_2,S_3\) lần lượt là tập nghiệm của các bất phương trình sau: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaamiEaaaakiabgUcaRiaaikdacaGGUaGaaG4mamaaCaaa % leqabaGaamiEaaaakiabgkHiTiaaiwdadaahaaWcbeqaaiaadIhaaa % GccqGHRaWkcaaIZaGaeyOpa4JaaGimaaaa!4265! {2^x} + {2.3^x} - {5^x} + 3 > 0\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bGaey4k % aSIaaGOmaaGaayjkaiaawMcaaiabgsMiJkabgkHiTiaaikdaaaa!4137! ;{\log _2}\left( {x + 2} \right) \le - 2\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % WcaaqaaiaaigdaaeaadaGcaaqaaiaaiwdaaSqabaGccqGHsislcaaI % XaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamiEaaaakiabg6da+i % aaigdaaaa!3DCA! ; {\left( {\frac{1}{{\sqrt 5 - 1}}} \right)^x} > 1\).Tìm khẳng định đúng?
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaaIXaaabeaakiabgkOimlaadofadaWgaaWcbaGaaG4maaqa % baGccqGHckcZcaWGtbWaaSbaaSqaaiaaikdaaeqaaaaa!3F3F! {S_1} \subset {S_3} \subset {S_2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaaIYaaabeaakiabgkOimlaadofadaWgaaWcbaGaaGymaaqa % baGccqGHckcZcaWGtbWaaSbaaSqaaiaaiodaaeqaaaaa!3F3F! {S_2} \subset {S_1} \subset {S_3}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaaIXaaabeaakiabgkOimlaadofadaWgaaWcbaGaaGOmaaqa % baGccqGHckcZcaWGtbWaaSbaaSqaaiaaiodaaeqaaaaa!3F3F! {S_1} \subset {S_2} \subset {S_3}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaaIYaaabeaakiabgkOimlaadofadaWgaaWcbaGaaG4maaqa % baGccqGHckcZcaWGtbWaaSbaaSqaaiaaigdaaeqaaaaa!3F3F! {S_2} \subset {S_3} \subset {S_1}\)
-
Câu 33:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 % gadaWadaqaamaabmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGL % PaaadaqadaqaaiaadIhacqGHsislcaaIYaaacaGLOaGaayzkaaWaae % WaaeaacaWG4bGaeyOeI0IaaG4maaGaayjkaiaawMcaaiabgUcaRiaa % igdaaiaawUfacaGLDbaacqGH+aGpcaaIWaaaaa!49AB! \ln \left[ {\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIXaGaai4oaiaaikdaaiaawIcacaGLPaaacqGHPiYXdaqadaqaaiaa % iodacaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaaaaa!40A9! \left( {1;2} \right) \cap \left( {3; + \infty } \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaaGymaaGaayjkaiaawMcaaiabgQIiipaa % bmaabaGaaGOmaiaacUdacaaIZaaacaGLOaGaayzkaaaaaa!40B6! \left( { - \infty ;1} \right) \cup \left( {2;3} \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaaGymaaGaayjkaiaawMcaaiabgMIihpaa % bmaabaGaaGOmaiaacUdacaaIZaaacaGLOaGaayzkaaaaaa!40B4! \left( { - \infty ;1} \right) \cap \left( {2;3} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIXaGaai4oaiaaikdaaiaawIcacaGLPaaacqGHQicYdaqadaqaaiaa % iodacaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaaaaa!40AB! \left( {1;2} \right) \cup \left( {3; + \infty } \right)\)
-
Câu 34:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 % gadaWadaqaamaabmaabaGaamiEaiabgkHiTiaaigdaaiaawIcacaGL % PaaadaqadaqaaiaadIhacqGHsislcaaIYaaacaGLOaGaayzkaaWaae % WaaeaacaWG4bGaeyOeI0IaaG4maaGaayjkaiaawMcaaiabgUcaRiaa % igdaaiaawUfacaGLDbaacqGH+aGpcaaIWaaaaa!49B6! \ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIXaGaai4oaiaaikdaaiaawIcacaGLPaaacqGHQicYdaqadaqaaiaa % iodacaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaGaaiOlaaaa!415D! \left( {1;2} \right) \cup \left( {3; + \infty } \right).\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq% GHsislcqGHEisPcaGG7aGaaGymaaGaayjkaiaawMcaaiabgMIihpaa % bmaabaGaaGOmaiaacUdacaaIZaaacaGLOaGaayzkaaGaaiOlaaaa!4166! \left( { - \infty ;1} \right) \cap \left( {2;3} \right).\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIXaGaai4oaiaaikdaaiaawIcacaGLPaaacqGHPiYXdaqadaqaaiaa % iodacaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaGaaiOlaaaa!415B! \left( {1;2} \right) \cap \left( {3; + \infty } \right).\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaaGymaaGaayjkaiaawMcaaiabgQIiipaa % bmaabaGaaGOmaiaacUdacaaIZaaacaGLOaGaayzkaaGaaiOlaaaa!4168! \left( { - \infty ;1} \right) \cup \left( {2;3} \right).\)
-
Câu 35:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaalaaabaGaamiEaiabgUcaRiaaikdaaeaacaaIZaGaeyOeI0IaaG % OmaiaadIhaaaGaeyyzImRaaGimaaaa!430F! {\log _{\frac{1}{2}}}\frac{{x + 2}}{{3 - 2x}} \ge 0\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9maadmaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aGaey4k % aSIaeyOhIukacaGLBbGaayzxaaaaaa!3E60! T = \left[ {\frac{3}{2}; + \infty } \right]\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9maadmaabaGaeyOeI0IaaGOmaiaacUdadaWcaaqaaiaaigdaaeaa % caaIZaaaaaGaay5waiaaw2faaaaa!3DB5! T = \left[ { - 2;\frac{1}{3}} \right]\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9maajadabaGaeyOeI0IaaGOmaiaacUdadaWcaaqaaiaaigdaaeaa % caaIZaaaaaGaayjkaiaaw2faaaaa!3DB5! T = \left( { - 2;\frac{1}{3}} \right]\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9maajadabaGaeyOeI0IaeyOhIuQaai4oamaalaaabaGaaGymaaqa % aiaaiodaaaaacaGLOaGaayzxaaaaaa!3E6A! T = \left( { - \infty ;\frac{1}{3}} \right]\)
-
Câu 36:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacYgacaGGVbGaai4z % amaaBaaaleaadaWcaaqaaiaaigdaaeaacaaIZaaaaaqabaGcdaqada % qaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI1aGaamiE % aiabgUcaRiaaiEdaaiaawIcacaGLPaaaaaa!46BE! f\left( x \right) = {\log _{\frac{1}{3}}}\left( {{x^2} - 5x + 7} \right)\). Nghiệm của bất phương trình f(x) > 0 là:
A. x > 3
B. x < 2 hoặc x > 3
C. 2 < x < 3
D. x < 2
-
Câu 37:
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamiEaiabgUcaRiGacYga % caGGVbGaai4zamaaBaaaleaacaaIZaaabeaakiaadIhacqGH+aGpca % aIXaaaaa!4217! {\log _2}x + {\log _3}x > 1\) có nghiệm là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6 % da+iaaiodadaahaaWcbeqaaiGacYgacaGGVbGaai4zamaaBaaameaa % caaIYaaabeaaliaaiAdaaaaaaa!3D66! x > {3^{{{\log }_2}6}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6 % da+iaaikdadaahaaWcbeqaaiGacYgacaGGVbGaai4zamaaBaaameaa % caaIZaaabeaaliaaiAdaaaaaaa!3D66! x > {2^{{{\log }_3}6}}\)
C. x > 6
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6 % da+iaaiodadaahaaWcbeqaaiGacYgacaGGVbGaai4zamaaBaaameaa % caaI2aaabeaaliaaikdaaaaaaa!3D66! x > {3^{{{\log }_6}2}}\)
-
Câu 38:
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaiodaaeqaaO % WaaSaaaeaacaaIYaGaamiEaiabgUcaRiaaigdaaeaacaWG4bGaeyOe % I0IaaGymaaaaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa!479A! {\log _{\frac{1}{2}}}\left( {{{\log }_3}\frac{{2x + 1}}{{x - 1}}} \right) > 0\) có tập nghiệm là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaeyOeI0IaaGOmaaGaayjkaiaawMcaaaaa % !3C43! \left( { - \infty ; - 2} \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiab % gQIiipaabmaabaGaaGinaiaacUdacqGHRaWkcqGHEisPaiaawIcaca % GLPaaaaaa!433C! \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aI0aGaai4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!3B4D! \left( {4; + \infty } \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcaaIYaGaai4oaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH % QicYdaqadaqaaiaaigdacaGG7aGaaGinaaGaayjkaiaawMcaaaaa!40EE! \left( { - 2; - 1} \right) \cup \left( {1;4} \right)\)
-
Câu 39:
Tập nghiệm của bất phương trình: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaiodaaaaabeaa % kmaabmaabaGaamiEaiabgkHiTiaaiodaaiaawIcacaGLPaaacqGHsi % slcaaIXaGaeyOpa4JaaGimaaaa!421C! {\log _{\frac{1}{3}}}\left( {x - 3} \right) - 1 > 0\) có dạng (a;b). Khi đó giá trị a + 3b bằng ?
A. 15
B. 13
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIZaGaaG4naaqaaiaaiodaaaaaaa!383E! \frac{{37}}{3}\)
D. 30
-
Câu 40:
Tậpnghiệmcủabấtphươngtrình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaiAdaaeqaaO % WaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiE % aaqaaiaadIhacqGHRaWkcaaI0aaaaaGaayjkaiaawMcaaiabgYda8i % {\log _{\frac{1}{2}}}\left( {{{\log }_6}\frac{{{x^2} + x}}{{x + 4}}} \right) < 0\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaaGinaiaacUdacqGHsislcaaIZaaacaGL % OaGaayzkaaGaeyOkIG8aaKGeaeaacaaI4aGaaGPaVlaacUdacqGHRa % WkcqGHEisPaiaawUfacaGLPaaaaaa!4640! S = \left( { - 4; - 3} \right) \cup \left[ {8\,; + \infty } \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maajibabaGaaGioaiaaykW7caGG7aGaey4kaSIaeyOhIukacaGL % BbGaayzkaaaaaa!3F04! S = \left[ {8\,; + \infty } \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaeyOhIuQaaGPaVlaacUdacqGHsislcaaI % 0aaacaGLOaGaayzkaaGaeyOkIG8aaeWaaeaacqGHsislcaaIZaGaaG % PaVlaacUdacaqGGaGaaGioaaGaayjkaiaawMcaaaaa!482F! S = \left( { - \infty \,; - 4} \right) \cup \left( { - 3\,;{\rm{ }}8} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaaGinaiaacUdacqGHsislcaaIZaaacaGL % OaGaayzkaaGaeyOkIG8aaeWaaeaacaaI4aGaaGPaVlaacUdacqGHRa % WkcqGHEisPaiaawIcacaGLPaaaaaa!45F6! S = \left( { - 4; - 3} \right) \cup \left( {8\,; + \infty } \right)\)
-
Câu 41:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaaciGGSbGaai4B % aiaacEgadaWgaaWcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaeqaaO % GaamiEaaGaayjkaiaawMcaaiabgYda8iaaigdaaaa!4289! {\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\) là:
A. (0;1)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % WcaaqaaiaaigdaaeaacaaI4aaaaiaacUdacaaIXaaacaGLOaGaayzk % aaaaaa!3A84! \left( {\frac{1}{8};1} \right)\)
C. (1;8)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % WcaaqaaiaaigdaaeaacaaI4aaaaiaacUdacaaIXaaacaGLOaGaayzk % aaaaaa!3A84! \left( {\frac{1}{8};3} \right)\)
-
Câu 42:
Tìm tất cả giá trị thực của tham số m để bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaey4kaSIaaGinaiaadIhacqGHRaWkcaWGTb % aacaGLOaGaayzkaaGaeyyzImRaaGymaaaa!4421! {\log _3}\left( {{x^2} + 4x + m} \right) \ge 1\) nghiệm đúng với mọi ?
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw % MiZkaaiEdaaaa!396C! m \ge 7\)
B. m > 7
C. m < 4
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiabgY % da8iaad2gacqGHKjYOcaaI3aaaaa!3B1D! 4 < m \le 7\)
-
Câu 43:
Tìm tất cả các giá trị thực của tham số m để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGTbGaamiE % aiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa % aacqGH9aqpcaaIYaaaaa!41CD! {\log _2}\left( {mx - {x^2}} \right) = 2\) vô nghiệm?
A. m < 4
B. -4 < m < 4
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe % qaaiaad2gacqGH+aGpcaaI0aaabaGaamyBaiabgYda8iabgkHiTiaa % isdaaaGaay5waaaaaa!3D4F! \left[ \begin{array}{l} m > 4\\ m < - 4 \end{array} \right.\)
D. m > -4
-
Câu 44:
Tìm tất cả các giá trị thực của tham số m để bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaiwdadaahaaWc % beqaaiaadIhaaaGccqGHsislcaaIXaGaaiykaiabgsMiJkaad2gaaa % a!4151! {\log _2}({5^x} - 1) \le m\) có nghiệm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw % MiZkaaigdaaaa!3972! x \ge 1\) ?
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw % MiZkaaikdaaaa!3968! m \ge 2\)
B. m > 2
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgs % MiJkaaikdaaaa!3957! m \le 2\)
D. m < 2
-
Câu 45:
Điều kiện xác định của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4BaiaacE % gadaWgaaWcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaeqaaOWaamWa % aeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGccaGGOa % GaaGOmaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGccaGGPaaa % caGLBbGaayzxaaGaeyOpa4JaaGimaaaa!45F7! lo{g_{\frac{1}{2}}}\left[ {{{\log }_2}(2 - {x^2})} \right] > 0\) là:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiolaabUfacqGHsislcaaIXaGaai4oaiaaigdacaGGDbaaaa!3D56! x \in {\rm{[}} - 1;1]\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiopaabmaabaGaeyOeI0IaaGymaiaacUdacaaIWaaacaGLOaGaayzk % aaGaeyOkIG8aaeWaaeaacaaIWaGaai4oaiaaigdaaiaawIcacaGLPa % aaaaa!427C! x \in \left( { - 1;0} \right) \cup \left( {0;1} \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiopaabmaabaGaeyOeI0IaaGymaiaacUdacaaIXaaacaGLOaGaayzk % aaGaeyOkIG8aaeWaaeaacaaIYaGaai4oaiabgUcaRiabg6HiLcGaay % jkaiaawMcaaaaa!4417! x \in \left( { - 1;1} \right) \cup \left( {2; + \infty } \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiopaabmaabaGaeyOeI0IaaGymaiaacUdacaaIXaaacaGLOaGaayzk % aaaaaa!3D20! x \in \left( { - 1;1} \right)\)
-
Câu 46:
Điều kiện xác định của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 % gadaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI % XaaabaGaamiEaaaacqGH8aapcaaIWaaaaa!3E3B! \ln \frac{{{x^2} - 1}}{x} < 0\)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe % qaaiabgkHiTiaaigdacqGH8aapcaWG4bGaeyipaWJaaGimaaqaaiaa % dIhacqGH+aGpcaaIXaaaaiaawUfaaaaa!3F1D! \left[ \begin{array}{l} - 1 < x < 0\\ x > 1 \end{array} \right.\)
B. x > -1
C. x > 0
D. \(\left[ \begin{array}{l} x < - 1\\ x > 1 \end{array} \right.\)
-
Câu 47:
Tìm số nghiệm nguyên của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaakaaabaGaaG4maaadbeaaliabgkHiTiaa % igdaaeqaaOWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey % OeI0IaaGOmaiaadIhacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeyOp % a4JaaGimaiaac6caaaa!45B6! {\log _{\sqrt 3 - 1}}\left( {{x^2} - 2x + 1} \right) > 0.\)
A. Vô số
B. 0
C. 2
D. 1
-
Câu 48:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4BaiaacE % gadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgkHiTiaaiodacaWG4bGaey4kaSIaaGymaiaacMcacq % GHKjYOcaaIWaaaaa!42C0! lo{g_2}({x^2} - 3x + 1) \le 0\) là ;
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maajibabaGaaGimaiaacUdadaWcaaqaaiaaiodacqGHsisldaGc % aaqaaiaaiwdaaSqabaaakeaacaaIYaaaaaGaay5waiaawMcaaiabgQ % IiipaajadabaWaaSaaaeaacaaIZaGaey4kaSYaaOaaaeaacaaI1aaa % leqaaaGcbaGaaGOmaaaacaGG7aGaaG4maaGaayjkaiaaw2faaaaa!46D5! S = \left[ {0;\frac{{3 - \sqrt 5 }}{2}} \right) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} \right]\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaaGimaiaacUdadaWcaaqaaiaaiodacqGHsisldaGc % aaqaaiaaiwdaaSqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiabgQ % IiipaabmaabaWaaSaaaeaacaaIZaGaey4kaSYaaOaaaeaacaaI1aaa % leqaaaGcbaGaaGOmaaaacaGG7aGaaG4maaGaayjkaiaawMcaaaaa!4622! S = \left( {0;\frac{{3 - \sqrt 5 }}{2}} \right) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maadmaabaWaaSaaaeaacaaIZaGaeyOeI0YaaOaaaeaacaaI1aaa % leqaaaGcbaGaaGOmaaaacaGG7aWaaSaaaeaacaaIZaGaey4kaSYaaO % aaaeaacaaI1aaaleqaaaGcbaGaaGOmaaaaaiaawUfacaGLDbaaaaa!412C! S= \left[ {\frac{{3 - \sqrt 5 }}{2};\frac{{3 + \sqrt 5 }}{2}} \right]\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9iabgwGigdaa!394B! S = \emptyset \)
-
Câu 49:
Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqaaO % WaaeWaaeaacaaIYaGaamiEaiabgkHiTiaaigdaaiaawIcacaGLPaaa % aiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa!4678! {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} \right)} \right) > 0\) là:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaaGymaiaacUdadaWcaaqaaiaaiodaaeaacaaIYaaa % aaGaayjkaiaawMcaaaaa!3C5E! S = \left( {1;\frac{3}{2}} \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaaGimaiaacUdadaWcaaqaaiaaiodaaeaacaaIYaaa % aaGaayjkaiaawMcaaaaa!3C5D! S = \left( {0;\frac{3}{2}} \right)\)
C. S = ( 0; 1)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGG7aGaaGOm % aaGaayjkaiaawMcaaaaa!3C5F! S = \left( {\frac{3}{2};2} \right)\)
-
Câu 50:
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGOmaaqaaiaaiodaaaaabeaa % kmaabmaabaGaaGOmaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsi % slcaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgYda8iaaicda % aaa!43FC! {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) có tập nghiệm là:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaaGimaiaacUdadaWcaaqaaiaaiodaaeaacaaIYaaa % aaGaayjkaiaawMcaaaaa!3C5C! S = \left( {0;\frac{3}{2}} \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaaGymaiaacUdadaWcaaqaaiaaiodaaeaa % caaIYaaaaaGaayjkaiaawMcaaaaa!3D4A! S = \left( { - 1;\frac{3}{2}} \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaeyOhIuQaai4oaiaaicdaaiaawIcacaGL % PaaacqGHQicYdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaai % 4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!44F3! S = \left( { - \infty ;0} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maabmaabaGaeyOeI0IaeyOhIuQaai4oaiaaigdaaiaawIcacaGL % PaaacqGHQicYdaqadaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaai % 4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!44F6! S = \left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)