Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaalaaabaGaamiEaiabgUcaRiaaikdaaeaacaaIZaGaeyOeI0IaaG % OmaiaadIhaaaGaeyyzImRaaGimaaaa!430F! {\log _{\frac{1}{2}}}\frac{{x + 2}}{{3 - 2x}} \ge 0\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaalaaabaGaamiEaiabgUcaRiaaikdaaeaacaaIZaGaeyOeI0IaaG % OmaiaadIhaaaGaeyyzImRaaGimaiabgsDiBpaalaaabaGaamiEaiab % gUcaRiaaikdaaeaacaaIZaGaeyOeI0IaaGOmaiaadIhaaaGaeyizIm % QaaGymaiabgsDiBlaadIhacqGHRaWkcaaIYaGaeyizImQaaG4maiab % gkHiTiaaikdacaWG4bGaeyi1HSTaamiEaiabgsMiJoaalaaabaGaaG % ymaaqaaiaaiodaaaaaaa!5E8E! {\log _{\frac{1}{2}}}\frac{{x + 2}}{{3 - 2x}} \ge 0 \Leftrightarrow \frac{{x + 2}}{{3 - 2x}} \le 1 \Leftrightarrow x + 2 \le 3 - 2x \Leftrightarrow x \le \frac{1}{3}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOKH4Qaam % iEaiabgIGiopaajadabaGaeyOeI0IaaGOmaiaacUdadaWcaaqaaiaa % igdaaeaacaaIZaaaaaGaayjkaiaaw2faaaaa!4044! \to x \in \left( { - 2;\frac{1}{3}} \right]\)