Đề thi HK2 môn Toán 11 năm 2021
Trường THPT Trần Văn Giàu
-
Câu 1:
Giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1} - 1}}{x}\) bằng
A. 2
B. 3
C. \(\frac{1}{2}\).
D. -2
-
Câu 2:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\). Biết \(SA = SC,\,SB = SD\). Tìm khẳng định sai ?
A. \(BD \bot (SAC).\)
B. \(CD \bot AC.\)
C. \(SO \bot (ABCD).\)
D. \(AC \bot (SBD).\)
-
Câu 3:
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 2}}\,\,\,\,khi\,\,\,x \ne 2\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x = 2\end{array} \right..\) Tìm tất cả các giá trị của tham số \(m\) để hàm số đã cho liên tục tại \({x_0} = 2.\)
A. m = - 2.
B. m = 1.
C. \(m = \pm \sqrt 2 .\)
D. m = 2
-
Câu 4:
Tiếp tuyến của đồ thị hàm số \(y = \frac{{{x^3}}}{3} - {x^2} - 2x\) có hệ số góc \(k = - 3\) có phương trình là
A. \(y = - 3x + \frac{1}{3}.\)
B. \(y = - 3x - \frac{1}{3}.\)
C. y = - 9x + 43.
D. y = - 3x - 11.
-
Câu 5:
Cho hàm số \(f(x) = \frac{1}{3}{x^3} + \frac{1}{2}{x^2} - 12x - 1\). Giải phương trình \(f'(x) = 0\).
A. \(\left\{ { - 4;3} \right\}\)
B. \(\left[ { - 3;4} \right]\).
C. \(\left[ { - 4;3} \right]\).
D. \(\left( { - \infty ; - 3} \right] \cup \left[ {4; + \infty } \right)\).
-
Câu 6:
Cho các hàm số \(u = u(x),v = v(x)\). Trong các công thức sau, công thức nào sai?
A. \(\left( {u.v} \right)' = u'.v - u.v'\)
B. \(\left( {\frac{u}{v}} \right)' = \frac{{u'.v - u.v'}}{{{v^2}}},\)\(v = v(x) \ne 0\)
C. \(\left( {u + v} \right)' = u' + v'\)
D. \(\left( {u - v} \right)' = u' - v'\)
-
Câu 7:
Đạo hàm của hàm số \(y = {x^4} + 3{x^2} - x + 1\) là
A. \(y' = 4{x^3} - 6{x^2} + x\)
B. \(y' = 4{x^3} + 3{x^2} - x\).
C. \(y' = 4{x^3} + 6x - 1\).
D. \(y' = 4{x^3} - 6x + 1\).
-
Câu 8:
Giới hạn\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{5}{{x - 1}}\) bằng
A. 2
B. -5
C. \( - \infty \).
D. \( + \infty \).
-
Câu 9:
Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là
A. \(y' = - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)
B. \(y' = - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)
C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).
D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).
-
Câu 10:
Cho hàm số \(f(x) = {\left( {{x^2} - 3x} \right)^2}\). Tính \(f'(1)\).
A. 4
B. -12
C. 1
D. -1
-
Câu 11:
Một chất điểm chuyển động có phương trình \(s = 2{t^3} + {t^2} + 1\) (t tính bằng giây, s tính bằng mét). Vận tốc của chất điểm tại thời điểm \({t_0} = 2\) (giây) bằng
A. \({\rm{19 m/s}}{\rm{.}}\)
B. \({\rm{29 m/s}}{\rm{.}}\)
C. \({\rm{28 m/s}}{\rm{.}}\)
D. \({\rm{21 m/s}}{\rm{.}}\)
-
Câu 12:
Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và\(\overrightarrow {DH} \).
A. \(60^\circ \).
B. \(45^\circ \).
C. \(90^\circ \).
D. \(120^\circ \).
-
Câu 13:
Trong các mệnh đề sau, mệnh đề nào đúng?
A. \(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos (\overrightarrow u ,\overrightarrow v ).\)
B. \(\overrightarrow u .\overrightarrow v = \overrightarrow u .\overrightarrow v .\sin (\overrightarrow u ,\overrightarrow v ).\)
C. \(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)
D. \(\overrightarrow u .\overrightarrow v = \overrightarrow u .\overrightarrow v .\cos (\overrightarrow u ,\overrightarrow v ).\)
-
Câu 14:
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}}\) bằng
A. 5
B. 6
C. 8
D. 7
-
Câu 15:
Trong các mệnh đề sau, mệnh đề nào sai ?
A. \(\lim \frac{1}{{{n^k}}} = 0\)\(\left( {k \ge 1} \right)\).
B. \(\lim {q^n} = + \infty \) nếu \(q > 1\) .
C. \(\lim {q^n} = + \infty \) nếu \(\left| q \right| < 1\).
D. \(\lim {n^k} = + \infty \) với \(k\) nguyên dương.
-
Câu 16:
Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?
A. \(y = {x^3} - 2x + 4.\)
B. \(y = \sqrt {2x - 1} .\)
C. \(y = \tan x.\)
D. \(y = \frac{{x + 2}}{{x - 1}}.\)
-
Câu 17:
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \)
B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \)
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \)
D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
-
Câu 18:
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + m\;x + 2019} + x} \right) = - 3\). Giá trị của \(m\) bằng
A. -6
B. 3
C. -3
D. 6
-
Câu 19:
Đạo hàm của hàm số \(y = \sin ({x^2} + 1)\) bằng:
A. \(y' = 2x\sin ({x^2} + 1)\).
B. \(y' = 2x\cos ({x^2} + 1)\).
C. \(y' = 2\cos ({x^2} + 1)\) .
D. \(y' = ({x^2} + 1)\cos (2x)\).
-
Câu 20:
Dãy số \(({u_n})\) với \({u_n} = \frac{{{3^n} + {{2.5}^n}}}{{{4^n} + {5^n}}}\)có giới hạn bằng
A. 4
B. 2
C. 3
D. 5
-
Câu 21:
Trong các khẳng định sau, khẳng định nào sai?
A. Hai đường thẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng \({90^0}\).
B. Một đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì vuông góc với đường thẳng còn lại.
C. Trong không gian, hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.
D. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
-
Câu 22:
Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } ( - {x^3} + 2{x^2} - x + 1)\) bằng
A. 1
B. \( - \infty \).
C. -1
D. \( + \infty \).
-
Câu 23:
Tính đạo hàm của hàm số \(y = \tan 3x\).
A. \(y' = - \frac{3}{{{{\cos }^2}3x}}\)
B. \(y' = - \frac{3}{{si{n^2}3x}}\).
C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).
D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).
-
Câu 24:
Cho tứ diện ABCD với M là trung điểm cạnh BC. Mệnh đề nào sau đây sai?
A. \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
B. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \overrightarrow 0 \)
C. \(\overrightarrow {MD} = - \frac{1}{2}\left( {\overrightarrow {DB} + \overrightarrow {DC} } \right)\)
D. \(\overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
-
Câu 25:
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?
A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)
B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)
C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)
D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)
-
Câu 26:
Trong các giới hạn sau đây, giới hạn nào bằng 2?
A. \(\lim \left( {2{n^2} + n + 3} \right)\)
B. \(\lim \frac{{2{n^5} - {n^4}}}{{ - 3{n^3} + {n^5}}}\)
C. \(\lim \frac{{2{n^2} + 1}}{{{n^4} + 3}}\)
D. \(\lim \frac{{{n^3} - 1}}{{ - 2{n^2} + 4{n^3}}}\)
-
Câu 27:
Bảo tàng Hà Nội được xây dựng gồm hai tầng hầm và bốn tầng nổi. Bốn tầng nổi được dùng để trưng bày rất nhiều những hiện vật có giá trị. Diện tích sàn tầng nổi thứ nhất xấp xỉ \(12\,000\,{m^2}\). Biết rằng mỗi tầng nổi tiếp theo có diện tích bằng \(\frac{4}{3}\) diện tích nổi ngay dưới nó. Tính tổng diện tích mặt sàn của bốn tầng nổi dùng để trưng bày hiện vật của bảo tàng (làm tròn đến hàng đơn vị).
A. \(37\,926\,{m^2}\)
B. \(77\,778\,{m^2}\)
C. \(77\,777\,{m^2}\)
D. \(48\,008\,{m^2}\)
-
Câu 28:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a. Tính cosin của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\).
A. \(\frac{{\sqrt {210} }}{{15}}\)
B. \(\frac{1}{3}\)
C. \(\frac{{\sqrt {15} }}{{15}}\)
D. \(\frac{1}{4}\)
-
Câu 29:
Tìm tham số a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} + 5} - 3}}{{x + 2}}\,\,\,khi\,\,\,x \ne - 2\\ax + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x = - 2\end{array} \right.\) liên tục tại \({x_0} = - 2\)
A. \(a = \frac{{10}}{3}\)
B. \(a = \frac{2}{3}\)
C. \(a = - \frac{5}{6}\)
D. \(a = \frac{5}{6}\)
-
Câu 30:
Cho cấp số cộng \(\left( {{u_n}} \right)\) biết \({u_1} = - 7,{S_{20}} = 620\). Tìm công sai \(d\)?
A. 4
B. \(\frac{{45}}{{19}}\)
C. \(\frac{{19}}{5}\)
D. \(\frac{{69}}{{19}}\)
-
Câu 31:
\(\lim \frac{{2n + 1}}{{n - 3}}\) bằng
A. \( - \frac{1}{3}\)
B. \( + \infty \)
C. \(\frac{1}{2}\)
D. 2
-
Câu 32:
Một điểm chuyển động thẳng, quãng đường đi được xác định bởi phương trình \(s\left( t \right) = {t^3} + 5{t^2} - 6t + 3\) (t tính bằng giây, s tính bằng mét). Tính vận tốc của chất điểm tại thời điểm \(t = 3\).
A. \(57\,m/s\)
B. \(51\,m/s\)
C. \(42\,m/s\)
D. \(39\,m/s\)
-
Câu 33:
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là
A. \({u_n} = \sin n\)
B. \({u_n} = \sqrt n - \sqrt {n - 1} \)
C. \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)
D. \({u_n} = \frac{{{n^2} + 1}}{n}\)
-
Câu 34:
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2020\). Tìm tập nghiệm \(S\) của bất phương trình \(f'\left( x \right) \le 0\).
A. \(S = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\)
B. \(S = \left[ {2; + \infty } \right)\)
C. \(S = \left( {0;2} \right)\)
D. \(S = \left[ {0;2} \right]\)
-
Câu 35:
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {ax + \sqrt {{x^2} + bx + 1} } \right) = \frac{1}{2}\). Tính \(A = 2a + b\)
A. -1
B. 2
C. 0
D. 1
-
Câu 36:
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = - 3,{u_2} = 6\). Tìm \({u_5}\).
A. \({u_5} = - 24\)
B. \({u_5} = 48\)
C. \({u_5} = - 48\)
D. \({u_5} = 24\)
-
Câu 37:
Trong bốn giới hạn sau đây, giới hạn nào là \( - \infty \)?
A. \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 4}}{{x - 1}}\)
B. \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 4}}{{x - 1}}\)
C. \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 4}}{{x - 1}}\)
D. \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - x + 4}}{{x - 1}}\)
-
Câu 38:
Cho hình chóp tứ giác \(S.ABCD\) có SA vuông góc với mặt phẳng (ABCD). Đáy \(ABCD\) là hình chữ nhật, \(SA = AB = a,BC = a\sqrt 2 \). Gọi \(\alpha \) là góc giữa hai đường thẳng \(AD\) và \(SC\). Tính số đo góc \(\alpha \).
A. \(\alpha = {135^0}\)
B. \(\alpha = {45^0}\)
C. \(\alpha = {90^0}\)
D. \(\alpha = {60^0}\)
-
Câu 39:
Đạo hàm của hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) là
A. \(y' = \frac{{2x + 2}}{{{{\left( {x + 1} \right)}^2}}}\)
B. y' = 2x + 2
C. \(y' = \frac{{{x^2} + 2x}}{{x + 1}}\)
D. \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)
-
Câu 40:
Cho hình lập phương \(ABCD.A'B'C'D'\). Mệnh đề nào sau đây sai?
A. \(B'D \bot AA'\)
B. \(B'D \bot AD'\)
C. \(B'D \bot \left( {ACD'} \right)\)
D. \(AB \bot B'C'\)