Đề thi giữa HK2 môn Toán 11 năm 2021
Trường THPT Thủ Thiêm
-
Câu 1:
Giá trị của \(\lim \frac{\cos n+\sin n}{n^{2}+1}\) bằng:
A. \(+\infty\)
B. \(-\infty\)
C. 0
D. 1
-
Câu 2:
Giá trị của \(\lim \frac{2}{n+1}\) bằng:
A. \(+\infty\)
B. \(-\infty\)
C. 0
D. 1
-
Câu 3:
Giá trị của \(\lim \frac{1-n^{2}}{n}\) bằng:
A. \(\begin{aligned} &+\infty \end{aligned}\)
B. \(-\infty\)
C. 0
D. 1
-
Câu 4:
Giá trị của \(\lim (2 n+1)\) bằng:
A. \(\begin{aligned} &+\infty\end{aligned}\)
B. \(-\infty\)
C. 0
D. 1
-
Câu 5:
Tìm giới hạn \(C=\lim\limits _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+x+1}-2 x\right)\)
A. \(+\infty\)
B. \(1\over 2\)
C. \(-\infty\)
D. 0
-
Câu 6:
Tìm giới hạn \(A=\lim\limits _{x \rightarrow+\infty}\left(\sqrt{x^{2}+x+1}-\sqrt[3]{2 x^{3}+x-1}\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(\frac{4}{3}\)
D. 0
-
Câu 7:
Tìm giới hạn \(D=\lim\limits _{x \rightarrow-\infty} \frac{\sqrt[3]{1+x^{4}+x^{6}}}{\sqrt{1+x^{3}+x^{4}}}\)
A. \(-\infty\)
B. \(+\infty\)
C. -1
D. 1
-
Câu 8:
Tìm giới hạn \(C=\lim\limits _{x \rightarrow+\infty} \frac{2 x+\sqrt{3 x^{2}+2}}{5 x-\sqrt{x^{2}+1}}\)
A. \(-\infty\)
B. \(\frac{2+\sqrt{3}}{4}\)
C. \(+\infty\)
D. 0
-
Câu 9:
\(\text { Tính giới hạn } L=\lim \frac{\sqrt[3]{n}+1}{\sqrt[3]{n+8}} \text { . }\)
A. -1
B. 0
C. 1
D. 2
-
Câu 10:
\(\text { Tính giới hạn } L=\lim \frac{\left(n^{2}+2 n\right)\left(2 n^{3}+1\right)(4 n+5)}{\left(n^{4}-3 n-1\right)\left(3 n^{2}-7\right)} \text { . }\)
A. L = 1
B. \(\begin{aligned} &L=\frac{8}{3} \end{aligned}\)
C. \(L=+\infty \text { . }\)
D. L = 2
-
Câu 11:
\(\text { Tính giới hạn } L=\lim \frac{\left(2 n-n^{3}\right)\left(3 n^{2}+1\right)}{(2 n-1)\left(n^{4}-7\right)}\)
A. \(L=-\frac{3}{2}\)
B. L = 1
C. \(L=\frac{1}{2}\)
D. L = 0
-
Câu 12:
Tìm tất cả các giá trị của tham số a để \(L=\lim \frac{5 n^{2}-3 a n^{4}}{(1-a) n^{4}+2 n+1}>0\)
A. \(a \leq 0 ; a \geq 1\)
B. 0<a<1
C. a<0 ; a>1
D. \(0 \leq a<1\)
-
Câu 13:
Giả sử \(\frac{{\sin \alpha }}{6}\), \(\cos \alpha \), \(\tan \alpha \) theo thứ tự đó là một cấp số nhân. Tính \(\cos 2\alpha \).
A. \(\frac{{\sqrt 3 }}{2}\)
B. \(-\frac{{\sqrt 3 }}{2}\)
C. \(\frac{1}{2}\)
D. \(-\frac{1}{2}\)
-
Câu 14:
Cho hình vuông (C1) có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2) (Hình vẽ).
Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1, C2, C3,.,Cn ... Gọi Si là diện tích của hình vuông \({C_i}\,\left( {i \in \left\{ {1,2,3,.....} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ...{S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính a?
A. 2
B. 2,5
C. \(\sqrt 2 \)
D. \(2\sqrt 2 \)
-
Câu 15:
Cho dãy số (un) xác định bởi \({u_1} = - \frac{{41}}{{20}}\) và \({u_{n + 1}} = 21{u_n} + 1\) với mọi \(n \ge 1.\) Tìm số hạng thứ 2018 của dãy số đã cho.
A. \({u_{2018}} = {2.21^{2018}} - \frac{1}{{20}}.\)
B. \({u_{2018}} = {2.21^{2017}} - \frac{1}{{20}}.\)
C. \({u_{2018}} = - {2.21^{2017}} - \frac{1}{{20}}.\)
D. \({u_{2018}} = - {2.21^{2018}} - \frac{1}{{20}}.\)
-
Câu 16:
Cho dãy số (an) xác định bởi \({a_1} = 2,{a_{n + 1}} = - 2{a_n},n \ge 1,n \in N,{a_{n + 1}} = - 2{a_n},n \ge 1,n \in N\). Tính tổng của 10 số hạng đầu tiên của dãy số.
A. \(\frac{{2050}}{3}\)
B. 2046
C. -682
D. -2046
-
Câu 17:
Cho cấp số cộng (un) có tất cả các số hạng đều dương thoả mãn \({u_1} + {u_2} + ... + {u_{2018}} = 4\left( {{u_1} + {u_2} + ... + {u_{1009}}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = \log _3^2{u_2} + \log _3^2{u_5} + \log _3^2{u_{14}}\) bằng
A. 3
B. 1
C. 2
D. 4
-
Câu 18:
Cho cấp số cộng (un) có các số hạng đều dương, số hạng đầu u1 = 1 và tổng của 100 số hạng đầu tiên bằng 14950. Tính giá trị của tổng \(S = \frac{1}{{{u_2}\sqrt {{u_1}} + {u_1}\sqrt {{u_2}} }} + \frac{1}{{{u_3}\sqrt {{u_2}} + {u_2}\sqrt {{u_3}} }} + ... + \frac{1}{{{u_{2018}}\sqrt {{u_{2017}}} + {u_{2017}}\sqrt {{u_{2018}}} }}\)
A. \(\frac{1}{3}\left( {1 - \frac{1}{{\sqrt {6052} }}} \right)\)
B. \(1 - \frac{1}{{\sqrt {6052} }}\)
C. 2018
D. 1
-
Câu 19:
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
A. 1635
B. 1792
C. 2055
D. 3125
-
Câu 20:
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
A. \(\frac{1}{2};{\rm{\;}}1;{\rm{\;}}\frac{3}{2}.\)
B. \(\frac{1}{3};{\rm{\;}}1;{\rm{\;}}\frac{5}{3}.\)
C. \(\frac{3}{4};{\rm{\;}}1;{\rm{\;}}\frac{5}{4}.\)
D. \(\frac{1}{4};{\rm{\;}}1;{\rm{\;}}\frac{7}{4}.\)
-
Câu 21:
Một du khách vào trường đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi lần tiền đặt cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khác trên thắng hay thua bao nhiêu?
A. Hòa vốn
B. Thua 20000 đồng
C. Thắng 20000 đồng
D. Thua 40000 đồng
-
Câu 22:
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nữa diện tích của mặt trên của tầng ngay bên dưới và diện tích mặt trên của tầng 1 bằng nửa diện tích của đế tháp (có diện tích là 12288 m2). Tính diện tích mặt trên cùng.
A. 6m2
B. 8m2
C. 10m2
D. 12m2
-
Câu 23:
Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày (nghĩa là sau 138 ngày khối lượng của nguyên tố đó chỉ còn một nửa). Tính (chính xác đến hàng phần trăm) khối lượng còn lại của 20 gam poloni 210 sau 7314 ngày (khoảng 20 năm).
A. \(2,22.10^{-15}\)
B. \(2,52.10^{-15}\)
C. \(3,22.10^{-15}\)
D. \(3,52.10^{-15}\)
-
Câu 24:
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với (n = k ) thì ta cần chứng minh mệnh đề đúng đến:
A. n=k-1
B. n=k−2
C. n=k+1
D. n=k+2
-
Câu 25:
Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?
A. \(\left( {AA'B'B} \right) \bot \left( {BB'C'C} \right)\)
B. \(\left( {AA'H} \right) \bot \left( {A'B'C'} \right)\)
C. BB'C'C là hình chữ nhật
D. \(\left( {BB'C'C} \right) \bot \left( {AA'H} \right)\)
-
Câu 26:
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khẳng định nào sau đây sai?
A. Hai mặt ACC'A' và BDD'B' vuông góc nhau.
B. Bốn đường chéo AC', A'C, BD', B'D bằng nhau và bằng \(a\sqrt 3\).
C. Hai mặt ACC'A' và BDD'B' là hai hình vuông bằng nhau.
D. \(AC \bot BD'\)
-
Câu 27:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khẳng định nào sau đây sai?
A. Tam giác AB'C là tam giác đều
B. Nếu \(\alpha\) là góc giữa AC' và (ABCD) thì \(\cos \alpha = \sqrt {\frac{2}{3}} \).
C. ACC'A' là hình chữ nhật có diện tích bằng 2a2
D. Hai mặt \(\left( {AA'C'C} \right)\) và \(\left( {BB'D'D} \right)\) ở trong hai mặt phẳng vuông góc với nhau.
-
Câu 28:
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Mặt phẳng \(\left( {{A_1}BD} \right)\) không vuông góc với mặt phẳng nào dưới đây?
A. \(\left( {A{B_1}D} \right)\)
B. \(\left( {AC{C_1}{A_1}} \right)\)
C. \(\left( {AB{D_1}} \right)\)
D. \(\left( {{A_1}B{C_1}} \right)\)
-
Câu 29:
Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
C. Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song.
D. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
-
Câu 30:
Trong các mệnh đề sau, mệnh đề nào sai?
A. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
B. Có duy nhất một mặt phẳng đi qua một đường thẳng cho trước và vuông góc với một mặt phẳng cho trước.
C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
D. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
-
Câu 31:
Trong không gian tập hợp các điểm M cách đều hai điểm cố định C và D là?
A. Mặt phẳng trung trực của đoạn thẳng CD .
B. Đường trung trực của đoạn thẳng CD .
C. Mặt phẳng vuông góc với CD tại C .
D. Đường thẳng qua C và vuông góc với CD .
-
Câu 32:
Mệnh đề nào sau đây có thể sai?
A. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
C. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.
D. Một đường thẳng và một mặt phẳng (không chứa đường thẳng đã cho) cùng vuông góc với một đường thẳng thì song song nhau.
-
Câu 33:
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Góc giữa AC và \(D{A_1}\) là
A. 45o
B. 90o
C. 60o
D. 120o
-
Câu 34:
Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \)?
A. 60o
B. 45o
C. 120o
D. 90o
-
Câu 35:
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?
A. 90o
B. 60o
C. 45o
D. 120o
-
Câu 36:
Cho \(\overrightarrow a = 3{,^{}}\overrightarrow b = 5\) góc giữa \(\vec a\) và \(\vec b\) bằng 120o. Chọn khẳng định sai trong các khẳng định sau?
A. \(\left| {\vec a + \vec b} \right| = \sqrt {19} \)
B. \(\left| {\vec a - \vec b} \right| = 7\)
C. \(\left| {\vec a - 2\vec b} \right| = \sqrt {139} \)
D. \(\left| {\vec a + 2\vec b} \right| = 9\)
-
Câu 37:
Cho hình lăng trụ \(A B C \cdot A^{\prime} B^{\prime} C^{\prime}\), M là trung điểm của BB' . Đặt \(\overrightarrow{C A}=\vec{a}, \overrightarrow{C B}=\vec{b}, \overrightarrow{A A^{\prime}}=\vec{c}\). Khẳng định nào sau đây đúng?
A. \(\overrightarrow {A M}=\vec{b}+\vec{c}-\frac{1}{2} \vec{a}\)
B. \(\overrightarrow{A M}=\vec{a}-\vec{c}+\frac{1}{2} \vec{b}\)
C. \(\overrightarrow{A M}=\vec{a}+\vec{c}-\frac{1}{2} \vec{b}\)
D. \(\overrightarrow{A M}=\vec{b}-\vec{a}+\frac{1}{2} \vec{c}\)
-
Câu 38:
Cho ba vectơ\(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
A. Các vec tơ \(\begin{array}{l} \vec{x}=\vec{a}+\vec{b}+2 \vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}-6 \vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+6 \vec{c} \end{array}\) đồng phẳng
B. Các vec tơ đồng phẳng \(\vec{x}=\vec{a}-2 \vec{b}+4 \vec{c} ; \vec{y}=3 \vec{a}-3 \vec{b}+2 \vec{c} ; \vec{z}=2 \vec{a}-3 \vec{b}-3 \vec{c} \)
C. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}+\vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}+\vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+3 \vec{c} \) đồng phẳng
D. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}-\vec{c} ; \vec{y}=2 \vec{a}-\vec{b}+3 \vec{c} ; \vec{z}=-\vec{a}-\vec{b}+2 \vec{c}\) đồng phẳng
-
Câu 39:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) với tâm O . Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:
A. \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C C^{\prime}}=\overrightarrow{A D^{\prime}}+\overrightarrow{D^{\prime} O}+\overrightarrow{O C^{\prime}}\)
B. \(\overrightarrow{A B}+\overrightarrow{A A^{\prime}}=\overrightarrow{A D}+\overrightarrow{D D^{\prime}}\)
C. \(\overrightarrow{A B}+\overrightarrow{B C^{\prime}}+\overrightarrow{C D}+\overrightarrow{D^{\prime} A}=\overrightarrow{0}\)
D. \(\overrightarrow{A C^{\prime}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A^{\prime}}\)
-
Câu 40:
Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có cạnh bằng a . Hãy tìm mệnh đề sai trong những mệnh đề sau đây:
A. \(2 \overrightarrow{A B}+\overrightarrow{B^{\prime} C^{\prime}}+\overrightarrow{C D}+\overrightarrow{D^{\prime} A^{\prime}}=\overrightarrow{0}\)
B. \(\overrightarrow{A D^{\prime}} \cdot \overrightarrow{A B^{\prime}}=a^{2}\)
C. \(\overrightarrow{A B^{\prime}} \cdot\overrightarrow{C D^{\prime}}=0\)
D. \(\left|\overrightarrow{A C^{\prime}}\right|=a \sqrt{3}\)