Cho dãy số (un) xác định bởi \({u_1} = - \frac{{41}}{{20}}\) và \({u_{n + 1}} = 21{u_n} + 1\) với mọi \(n \ge 1.\) Tìm số hạng thứ 2018 của dãy số đã cho.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({u_{n + 1}} = 21{u_n} + 1 \Leftrightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} \right) \Leftrightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} \right)\).
Đặt \({v_n} = {u_n} + \frac{1}{{20}}\), ta có \({v_{n + 1}} = 21{v_n}\).
Do đó (vn) là một CSN với \({v_1} = - \frac{{41}}{{20}} + \frac{1}{{20}} = - 2\) và công bội q = 21.
Do đó số hạng tổng quát của dãy (vn) là
\({v_n} = {v_1}.{q^{n - 1}} = - {2.21^{n - 1}} \Rightarrow {u_n} = - {2.21^{n - 1}} - \frac{1}{{20}}\)
\( \Rightarrow {u_n} = - {2.21^{n - 1}} - \frac{1}{{20}}\)
Khi đó \({u_{2018}} = - {2.21^{2017}} - \frac{1}{{20}}\).