Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh bằng \(a\) và \(SA \bot \left( {ABCD} \right).\) Biết \(SA = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa \(SC\) và \(\left( {ABCD} \right).\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(SA \bot \left( {ABCD} \right)\) nên AC là hình chiếu của SC lên (ABCD).
\( \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right)\)\( = \angle \left( {SC;AC} \right) = \angle SCA\) .
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AC\), do đó tam giác SAC vuông tại A.
Ta có: ABCD là hình vuông cạnh a nên \(AC = a\sqrt 2 \).
Xét tam giác vuông SAC có: \(\tan \angle SCA = \frac{{SA}}{{AC}}\)\( = \frac{{a\sqrt 6 }}{3}:a\sqrt 2 = \frac{{\sqrt 3 }}{3}\) \( \Rightarrow \angle SCA = {30^0}\)
Vậy góc giữa SC và (ABCD) bằng \({30^0}\).