ADMICRO
Tính \(f'\left( 1 \right)\) biết \(f\left( x \right) = \dfrac{1}{x} + \dfrac{2}{{{x^2}}} + \dfrac{3}{{{x^3}}}\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\begin{array}{l}f'\left( x \right) = - \dfrac{1}{{{x^2}}} + \dfrac{{ - 2\left( {{x^2}} \right)'}}{{{x^4}}} + \dfrac{{ - 3\left( {{x^3}} \right)'}}{{{x^6}}}\\ = - \dfrac{1}{{{x^2}}} - \dfrac{{2.2x}}{{{x^4}}} - \dfrac{{3.3{x^2}}}{{{x^6}}}\\ = - \dfrac{1}{{{x^2}}} - \dfrac{4}{{{x^3}}} - \dfrac{9}{{{x^4}}}\\ \Rightarrow f'\left( 1 \right) = - 1 - 4 - 9 = - 14\end{array}\)
ZUNIA9
AANETWORK