Tìm tập xác định của hàm số \(y=\dfrac{2-\cos x}{1+\tan {\left({x-\dfrac{\pi}{3}}\right)}}\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐKXĐ: \(\left\{ \begin{array}{l} \cos {\left({x-\dfrac{\pi}{3}}\right)}\ne0\\\tan {\left({x-\dfrac{\pi}{3}}\right)}\ne -1\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l} x-\dfrac{\pi}{3}\ne\dfrac{\pi}{2}+k\pi ,k \in \mathbb{Z}\\x-\dfrac{\pi}{3}\ne -\dfrac{\pi}{4}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l} x\ne\dfrac{5\pi}{6}+k\pi ,k \in \mathbb{Z}\\x\ne \dfrac{\pi}{12}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash\) \( \left[ {\left\{ {\dfrac{{5\pi }}{6} + k\pi ,k \in \mathbb{Z}} \right\} \cup \left\{ {\dfrac{\pi }{{12}} + k\pi ,k \in \mathbb{Z}} \right\}} \right]\).