ADMICRO
Tìm nghiệm phức của phương trình bậc hai \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\) có biệt thức
\(\Delta = {\left( {1 - 3i} \right)^2} + 8\left( {1 + i} \right) \) \( = 1 - 9 - 6i + 8 + 8i = 2i = {\left( {1 + i} \right)^2}\)
Do đó phương trình có hai nghiệm là: \({z_1} = {1 \over 2}\left[ { - 1 + 3i + \left( {1 + i} \right)} \right] = 2i\)
\({z_2} = {1 \over 2}\left[ { - 1 + 3i - \left( {1 + i} \right)} \right] = - 1 + i\)
Vậy \(S = \left\{ {2i; - 1 + i} \right\}\)
ZUNIA9
AANETWORK