Phương trình \(\cos {x \over 2} = - \cos \left( {2x - {{30}^o}} \right)\) có nghiệm là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\eqalign{
& \cos {x \over 2} = - \cos \left( {2x - {{30}^o}} \right)\cr &\Leftrightarrow \cos {x \over 2} + \cos \left( {x - {{30}^o}} \right) = 0 \cr
& \Leftrightarrow 2\cos \left( {{{5x} \over 4} - {{15}^o}} \right)\cos \left( {{{15}^o} - {{3x} \over 4}} \right) = 0 \cr} \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\cos \left( {\frac{{5x}}{4} - {{15}^0}} \right) = 0\\
\cos \left( {{{15}^0} - \frac{{3x}}{4}} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{5x}}{4} - {15^0} = {90^0} + k{180^0}\\
{15^0} - \frac{{3x}}{4} = {90^0} + k{180^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{5x}}{4} = {105^0} + k{180^0}\\
\frac{{3x}}{4} = - {75^0} - k{180^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {84^0} + k{144^0}\\
x = - {100^0} - k{240^0}
\end{array} \right.
\end{array}\)