Tính tổng các hệ số trong khai triển sau \({\left( {1 - 2x} \right)^{2018}}.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét khai triển \({(1 - 2{\rm{x}})^{2018}} = C_{2018}^0 - 2{\rm{x}}.C_{2018}^1 + {( - 2{\rm{x}})^2}.C_{2018}^2 + {( - 2{\rm{x)}}^3}{\rm{.C}}_{2018}^3 + ... + {( - 2{\rm{x)}}^{2018}}{\rm{.C}}_{2018}^{2018}\)
Tổng các hệ số trong khai triển là
\(S = C_{2018}^0 - 2.C_{2018}^1 + {( - 2)^2}.C_{2018}^2 + {( - 2{\rm{)}}^3}{\rm{.C}}_{2018}^3 + ... + {( - 2{\rm{)}}^{2018}}{\rm{.C}}_{2018}^{2018}\)
Cho \(x = 1\) ta có
\(\begin{array}{l}{(1 - 2.1)^{2018}} = C_{2018}^0 - 2.1.C_{2018}^1 + {( - 2.1)^2}.C_{2018}^2 + {( - 2.1{\rm{)}}^3}{\rm{.C}}_{2018}^3 + ... + {( - 2.1{\rm{)}}^{2018}}{\rm{.C}}_{2018}^{2018}\\ \Leftrightarrow {\left( { - 1} \right)^{2018}} = S \Leftrightarrow S = 1\end{array}\)