Tính giới hạn: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa % igdaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawM % caamaabmaabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaioda % daahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaiOlaiaac6 % cacaGGUaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGa % amOBamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaiaawU % facaGLDbaaaaa!4E05! \lim \left[ {\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)} \right]\) .
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG1bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa!39A0! \left( {{u_n}} \right)\), với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maabmaabaGaaGymaiabgkHiTmaa % laaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaaikdaaaaaaaGcca % GLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaa % baGaaG4mamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca % GGUaGaaiOlaiaac6cadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa % igdaaeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawM % caaaaa!4C6C! {u_n} = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)\); \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw % MiZkaaikdacaGGSaGaaGPaVlaad6gacqGHiiIZcqWIvesPaaa!3F87! n \ge 2,\,n \in N \)
Ta có:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaaIYaaabeaakiabg2da9iaaigdacqGHsisldaWcaaqaaiaa % igdaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maala % aabaGaaG4maaqaaiaaisdaaaGaeyypa0ZaaSaaaeaacaaIYaGaey4k % aSIaaGymaaqaaiaaikdacaGGUaGaaGOmaaaaaaa!4532! {u_2} = 1 - \frac{1}{{{2^2}}} = \frac{3}{4} = \frac{{2 + 1}}{{2.2}}\);
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaaIZaaabeaakiabg2da9maabmaabaGaaGymaiabgkHiTmaa % laaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaaikdaaaaaaaGcca % GLOaGaayzkaaGaaiOlamaabmaabaGaaGymaiabgkHiTmaalaaabaGa % aGymaaqaaiaaiodadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaay % zkaaGaeyypa0ZaaSaaaeaacaaIZaaabaGaaGinaaaacaGGUaWaaSaa % aeaacaaI4aaabaGaaGyoaaaacqGH9aqpdaWcaaqaaiaaisdaaeaaca % aI2aaaaiabg2da9maalaaabaGaaG4maiabgUcaRiaaigdaaeaacaaI % YaGaaiOlaiaaiodaaaaaaa!51F7! {u_3} = \left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right) = \frac{3}{4}.\frac{8}{9} = \frac{4}{6} = \frac{{3 + 1}}{{2.3}}\);
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaaI0aaabeaakiabg2da9maabmaabaGaaGymaiabgkHiTmaa % laaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaaikdaaaaaaaGcca % GLOaGaayzkaaGaaiOlamaabmaabaGaaGymaiabgkHiTmaalaaabaGa % aGymaaqaaiaaiodadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaay % zkaaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGin % amaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGH9aqpda % WcaaqaaiaaiodaaeaacaaI0aaaaiaac6cadaWcaaqaaiaaiIdaaeaa % caaI5aaaaiaac6cadaWcaaqaaiaaigdacaaI1aaabaGaaGymaiaaiA % daaaGaeyypa0ZaaSaaaeaacaaI1aaabaGaaGioaaaacqGH9aqpdaWc % aaqaaiaaisdacqGHRaWkcaaIXaaabaGaaGOmaiaac6cacaaI0aaaaa % aa!5B61! {u_4} = \left( {1 - \frac{1}{{{2^2}}}} \right).\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right) = \frac{3}{4}.\frac{8}{9}.\frac{{15}}{{16}} = \frac{5}{8} = \frac{{4 + 1}}{{2.4}}\)
...
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaamOBaiabgUcaRiaa % igdaaeaacaaIYaGaamOBaaaaaaa!3D6C! {u_n} = \frac{{n + 1}}{{2n}}\)
Dễ dàng chứng minh bằng phương pháp qui nạp để khẳng định \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaamOBaiabgUcaRiaa % igdaaeaacaaIYaGaamOBaaaacaGGSaGaaGPaVlabgcGiIiaad6gacq % GHLjYScaaIYaaaaa!43EC! {u_n} = \frac{{n + 1}}{{2n}},\,\forall n \ge 2\)
Khi đó .
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa % igdaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawM % caamaabmaabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaioda % daahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaiOlaiaac6 % cacaGGUaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGa % amOBamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaiaawU % facaGLDbaacqGH9aqpciGGSbGaaiyAaiaac2gadaWcaaqaaiaad6ga % cqGHRaWkcaaIXaaabaGaaGOmaiaad6gaaaGaeyypa0ZaaSaaaeaaca % aIXaaabaGaaGOmaaaaaaa!58B7! \lim \left[ {\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)} \right] = \lim \frac{{n + 1}}{{2n}} = \frac{1}{2}\)