Tìm m để phương trình sau có nghiệm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaisdacqGHsislcaWG4baaleqaaOGaey4kaSYaaOaaaeaa % caaI0aGaey4kaSIaamiEaaWcbeaaaOGaayjkaiaawMcaamaaCaaale % qabaGaaG4maaaakiabgkHiTiaaiAdadaGcaaqaaiaaigdacaaI2aGa % eyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaey4kaSIaaG % Omaiaad2gacqGHRaWkcaaIXaGaeyypa0JaaGimaiaac6caaaa!4B96! {\left( {\sqrt {4 - x} + \sqrt {4 + x} } \right)^3} - 6\sqrt {16 - {x^2}} + 2m + 1 = 0.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐK \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI % GiopaadmaabaGaeyOeI0IaaGinaiaacUdacaaMc8UaaGinaaGaay5w % aiaaw2faaaaa!3F1A! x \in \left[ { - 4;\,4} \right]\). Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 % da9maakaaabaGaaGinaiabgkHiTiaadIhaaSqabaGccqGHRaWkdaGc % aaqaaiaaisdacqGHRaWkcaWG4baaleqaaaaa!3E5A! t = \sqrt {4 - x} + \sqrt {4 + x} \) , ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI % GiopaadmaabaGaaGOmamaakaaabaGaaGOmaaWcbeaakiaacUdacaaM % c8UaaGinaaGaay5waiaaw2faaaaa!3F08! t \in \left[ {2\sqrt 2 ;\,4} \right]\).
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa % aaleqabaGaaGOmaaaakiabg2da9iaaikdadaGcaaqaaiaaigdacaaI % 2aGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaey4kaS % IaaGioaaaa!3FAE! {t^2} = 2\sqrt {16 - {x^2}} + 8\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaaG % OmamaakaaabaGaaGymaiaaiAdacqGHsislcaWG4bWaaWbaaSqabeaa % caaIYaaaaaqabaGccqGH9aqpcaWG0bWaaWbaaSqabeaacaaIYaaaaO % GaeyOeI0IaaGioaiaac6caaaa!42C7! \Leftrightarrow 2\sqrt {16 - {x^2}} = {t^2} - 8.\)
Phương trình đã cho trở thành \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa % aaleqabaGaaG4maaaakiabgkHiTiaaiodadaqadaqaaiaadshadaah % aaWcbeqaaiaaikdaaaGccqGHsislcaaI4aaacaGLOaGaayzkaaGaey % 4kaSIaaGOmaiaad2gacqGHRaWkcaaIXaGaeyypa0JaaGimaaaa!449C! {t^3} - 3\left( {{t^2} - 8} \right) + 2m + 1 = 0\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaaG % Omaiaad2gacqGH9aqpcqGHsislcaWG0bWaaWbaaSqabeaacaaIZaaa % aOGaey4kaSIaaG4maiaadshadaahaaWcbeqaaiaaikdaaaGccqGHsi % slcaaIYaGaaGynaiaac6caaaa!4483! \Leftrightarrow 2m = - {t^3} + 3{t^2} - 25.\)
Xét hàm số: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHiTiaadshadaah % aaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaamiDamaaCaaaleqaba % GaaGOmaaaakiabgkHiTiaaikdacaaI1aGaeyO0H4TabmOzayaafaWa % aeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaaG4mai % aadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaamiDaiaa % c6caaaa!50F3! f\left( t \right) = - {t^3} + 3{t^2} - 25 \Rightarrow f'\left( t \right) = - 3{t^2} + 6t.\)
Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaaG4m % aiaadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaamiDai % abgYda8iaaicdacaGGSaGaaGjbVlabgcGiIiaadshacqGHiiIZdaWa % daqaaiaaikdadaGcaaqaaiaaikdaaSqabaGccaGG7aGaaGPaVlaais % daaiaawUfacaGLDbaaaaa!4E83! f'\left( t \right) = - 3{t^2} + 6t < 0,\;\forall t \in \left[ {2\sqrt 2 ;\,4} \right]\) nên phương trình có nghiệm khi và chỉ khi
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaaGinaaGaayjkaiaawMcaaiabgsMiJkaaikdacaWGTbGaeyiz % ImQaamOzamaabmaabaGaaGOmamaakaaabaGaaGOmaaWcbeaaaOGaay % jkaiaawMcaaiabgsDiBdaa!44AB! f\left( 4 \right) \le 2m \le f\left( {2\sqrt 2 } \right) \Leftrightarrow \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG % inaiaaigdacqGHKjYOcaaIYaGaamyBaiabgsMiJkabgkHiTiaaigda % cqGHsislcaaIXaGaaGOnamaakaaabaGaaGOmaaWcbeaaaaa!4259! - 41 \le 2m \le - 1 - 16\sqrt 2 \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaey % OeI0YaaSaaaeaacaaI0aGaaGymaaqaaiaaikdaaaGaeyizImQaamyB % aiabgsMiJoaalaaabaGaeyOeI0IaaGymaiabgkHiTiaaigdacaaI2a % WaaOaaaeaacaaIYaaaleqaaaGcbaGaaGOmaaaacaGGUaaaaa!464D! \Leftrightarrow - \frac{{41}}{2} \le m \le \frac{{ - 1 - 16\sqrt 2 }}{2}.\)