Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGHbWaaOaaaeaacaaIZaaaleqaaaGcbaGaaGinaaaaaaa!388A! \frac{{a\sqrt 3 }}{4}\). Khi đó thể tích của khối lăng trụ là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trọng tâm tam giác ABC và I là trung điểm BCBC. Ta có:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVlaayk % W7daGabaabaeqabaGabmyqayaafaGaamisaiabgwQiEjaadkeacaWG % dbGaaGPaVdqaaiaadgeacaWGjbGaeyyPI4LaamOqaiaadoeaaeaace % WGbbGbauaacaWGibGaeyykICSaamyqaiaadMeacqGH9aqpcaWGibGa % aGPaVdaacaGL7baacaaMc8UaaGPaVlabgkDiElaadkeacaWGdbGaey % yPI41aaeWaaeaaceWGbbGbauaacaWGbbGaamysaaGaayjkaiaawMca % aiabgkDiElaadkeacaWGdbGaeyyPI4Laamyqaiqadgeagaqbaiaac6 % caaaa!6222! \,\,\left\{ \begin{array}{l} A'H \bot BC\,\\ AI \bot BC\\ A'H \cap AI = H\, \end{array} \right.\,\, \Rightarrow BC \bot \left( {A'AI} \right) \Rightarrow BC \bot AA'.\)
Gọi K là hình chiếu vuông góc của I lên AA'. Khi đó IK là đoạn vuông góc chung của AA' và BC nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaadU % eacaqG9aGaamizamaabmaabaGaamyqaiqadgeagaqbaiaabYcacaqG % GaGaamOqaiaadoeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadg % gadaGcaaqaaiaaiodaaSqabaaakeaacaaI0aaaaiaac6caaaa!438A! IK{\rm{ = }}d\left( {AA'{\rm{, }}BC} \right) = \frac{{a\sqrt 3 }}{4}.\) Xét tam giác vuông AIK vuông tại K có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaadU % eacaqG9aWaaSaaaeaacaWGHbWaaOaaaeaacaaIZaaaleqaaaGcbaGa % aGinaaaacaGGSaGaaGPaVlaaykW7caWGbbGaamysaiabg2da9maala % aabaGaamyyamaakaaabaGaaG4maaWcbeaaaOqaaiaaikdaaaGaeyO0 % H4TaamysaiaadUeacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaai % aadgeacaWGjbGaeyO0H49aaecaaeaacaWGlbGaamyqaiaadMeaaiaa % wkWaaiabg2da9iaaiodacaaIWaGaeyiSaaRaaiOlaaaa!5695! IK{\rm{ = }}\frac{{a\sqrt 3 }}{4},\,\,AI = \frac{{a\sqrt 3 }}{2} \Rightarrow IK = \frac{1}{2}AI \Rightarrow \widehat {KAI} = 30^\circ .\)
Xét tam giác vuông AA'H vuông tại H có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyqayaafa % Gaamisaiaab2dacaWGbbGaamisaiaab6cacaqG0bGaaeyyaiaab6ga % caqGZaGaaeimaiabgclaWkabg2da9maalaaabaGaamyyamaakaaaba % GaaG4maaWcbeaaaOqaaiaaiodaaaGaaiOlamaalaaabaWaaOaaaeaa % caaIZaaaleqaaaGcbaGaaG4maaaacqGH9aqpdaWcaaqaaiaadggaae % aacaaIZaaaaiaac6caaaa!4A1E! A'H{\rm{ = }}AH{\rm{.tan30}}^\circ = \frac{{a\sqrt 3 }}{3}.\frac{{\sqrt 3 }}{3} = \frac{a}{3}.\)
Vậy: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBa % aaleaacaWGbbGaamOqaiaadoeacaGGUaGabmyqayaafaGabmOqayaa % faGabm4qayaafaaabeaakiabg2da9maalaaabaGaamyyamaaCaaale % qabaGaaGOmaaaakmaakaaabaGaaG4maaWcbeaaaOqaaiaaisdaaaGa % aiOlamaalaaabaGaamyyaaqaaiaaiodaaaGaeyypa0ZaaSaaaeaaca % WGHbWaaWbaaSqabeaacaaIZaaaaOWaaOaaaeaacaaIZaaaleqaaaGc % baGaaGymaiaaikdaaaGaaiOlaaaa!4971! {{\rm{V}}_{ABC.A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4}.\frac{a}{3} = \frac{{{a^3}\sqrt 3 }}{{12}}.\)