ADMICRO
Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(y' = 3{x^2} - 6x + m \Rightarrow y'' = 6x - 6.\)
\(x = 0\) là điểm cực đại của hàm số \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( 0 \right) = 0\\y''\left( 0 \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 0\\6.0 - 6 < 0\;\;\forall m\end{array} \right. \Leftrightarrow m = 0.\)
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Quảng Chí
10/11/2024
12 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK