Số nghiệm thực của phương trình \( {4^x} - {2^{x + 2}} + 3 = 0\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t= 2^x , t > 0\) ta được phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaisdacaWG0bGaey4kaSIaaG4m % aiabg2da9iaaicdacqGHuhY2daWabaabaeqabaGaamiDaiabg2da9i % aaigdaaeaacaWG0bGaeyypa0JaaG4maaaacaGLBbaaaaa!46B6! {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l} t = 1\\ t = 3 \end{array} \right.\)
Với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaamiEaaaakiabg2da9iaaigdacqGHuhY2caWG4bGaeyyp % a0JaaGimaaaa!3EBD! {2^x} = 1 \Leftrightarrow x = 0\) và với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaamiEaaaakiabg2da9iaaiodacqGHuhY2caWG4bGaeyyp % a0JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaaG4maa % aa!4284! {2^x} = 3 \Leftrightarrow x = {\log _2}3\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 2