ADMICRO
Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\({z^2} - 4z + 9 = 0 \Leftrightarrow \left[ \begin{array}{l} z = 2 + \sqrt 5 i\\ z = 2 - \sqrt 5 \end{array} \right.\)
Vì z0 có phần ảo nên \({z_0} = 2 - \sqrt 5 i\)
\(\omega = \left( {1 + i} \right){z_0} = \left( {1 + i} \right)\left( {2 - \sqrt 5 i} \right) = 2 + \sqrt 5 + \left( {2 - \sqrt 5 } \right)i\)
Tọa độ điểm biểu diễn w là \(\left( {2 + \sqrt 5 \,;\,2 - \sqrt 5 } \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK