Cho tập hợp \(S = {\rm{\{ }}1;2;3;4;5;6\} \). Viết ngẫu nhiên lên bảng một số tự nhiên có 3 chữ số khác nhau lấy từ tập S. Xác suất để được một số chia hết cho 6 bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi số viết được có dạng \(X = \overline {abc} \). Số phần tử của không gian mẫu là \(n\left( \Omega \right) = A_6^3 = 120\).
Gọi T là biến cố: “Số được viết là một số có 3 chữ số khác nhau chia hết cho 6”.
TH1: \(X = \overline {ab2} \):
Ta suy ra a + b chia cho 3 dư 1 nên \(\left( {a;b} \right) \in \left\{ {\left( {1;3} \right),\left( {1;6} \right),\left( {3;4} \right),\left( {4;6} \right)} \right\} \Rightarrow \) Số các kết quả thuận lợi của biến cố T là 8.
TH2: \(X = \overline {ab4} \):
Ta suy ra a + b chia cho 3 dư 2 nên \(\left( {a;b} \right) \in \left\{ {\left( {2;3} \right),\left( {2;6} \right),\left( {3;5} \right),\left( {5;6} \right)} \right\} \Rightarrow \) Số các kết quả thuận lợi của biến cố T là 8.
TH3: \(X = \overline {ab6} \):
Ta suy a + b ra chia cho 3 dư 0 nên \(\left( {a;b} \right) \in \left\{ {\left( {1;2} \right),\left( {1;5} \right),\left( {2;4} \right),\left( {4;5} \right)} \right\} \Rightarrow \) Số các kết quả thuận lợi của biến cố T là 8.
Tổng các kết quả thuận lợi của biến cố T là n(T) = 24
Xác suất cần tìm là \(P\left( T \right) = \frac{{n\left( T \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{120}} = \frac{1}{5}.\)