Cho phương trình \(\left( 4\log _{2}^{2}x+{{\log }_{2}}x-5 \right)\sqrt{{{7}^{x}}-m}=0\) (\(m\) là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của để phương trình đã cho có đúng hai nghiệm phân biệt?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChọn A
Xét phương trình \(\left( 4\log _{2}^{2}x+{{\log }_{2}}x-5 \right)\sqrt{{{7}^{x}}-m}=0\)
Điều kiện: \(\left\{ \begin{matrix} x>0 \\ m\le {{7}^{x}} \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} x\ge {{\log }_{7}}m \\ x>0 \\ \end{matrix} \right.\).
Phương trình tương đương
\(\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {4\log _2^2x + {{\log }_2}x - 5 = 0}\\ {{7^x} - m = 0} \end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {x = 2}\\ {x = {2^{\frac{{ - 5}}{4}}}} \end{array}}\\ {x = {{\log }_7}m} \end{array}} \right. \end{array}\)
Để phương trình có đúng hai nghiệm phân biệt:
TH1: \({{\log }_{7}}m\le 0\Leftrightarrow 0<m\le 1\Rightarrow m=1\).
TH2: \({{2}^{\frac{-5}{4}}}\le {{\log }_{7}}m<2\Leftrightarrow {{7}^{{{2}^{\frac{-5}{4}}}}}\le m<49\Rightarrow m\in \left\{ 3;4;...;48 \right\}\).
Vậy có tất cả \(47\) giá trị \(m\) thỏa mãn.
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Sở GD&ĐT Bắc Ninh lần 1