Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(BC/B'C' \Rightarrow BC//\left( {AB'C'} \right)\)
suy ra \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {B,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right)\)
Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI.
Ta có \(B'C' \bot A'I\) và \(B'C' \bot A'A\) nên \(B'C' \bot \left( {A'AI} \right) \Rightarrow B'C' \bot A'H\) mà \(AI \bot A'H\). Do đó \(\left( {AB'C'} \right) \bot A'H\)
Khi đó \(d\left( {A',\left( {AB'C'} \right)} \right) = A'H = \frac{{A'A.A'I}}{{\sqrt {A'{A^2} + A'{I^2}} }} = \frac{{a.\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{7}\).
Vậy khoảng cách cần tìm là \(\frac{{a\sqrt {21} }}{7}\).
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Lê Văn Thịnh - Bắc Ninh