Cho hình hộp ABCD.A'B'C'D' thể tích là V Tính thể tích của tứ diện ACB'D' theo V
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có ngay kết quả sau:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGbbGaam4qaiaadkeacaGGNaGaamiraiaacEcaaeqaaOGa % eyypa0JaamOvaiabgkHiTmaabmaabaGaamOvamaaBaaaleaacaWGcb % Gaai4jaiaac6cacaWGbbGaamOqaiaadoeaaeqaaOGaey4kaSIaamOv % amaaBaaaleaacaWGdbGaaiOlaiaadkeacaGGNaGaam4qaiaacEcaca % WGebGaai4jaaqabaGccqGHRaWkcaWGwbWaaSbaaSqaaiaadseacaGG % NaGaaiOlaiaadgeacaWGdbGaamiraaqabaGccqGHRaWkcaWGwbWaaS % baaSqaaiaadgeacaGGUaGaamyqaiaacEcacaWGcbGaai4jaiaadsea % caGGNaaabeaaaOGaayjkaiaawMcaaiaac6caaaa!5C03! {V_{ACB'D'}} = V - \left( {{V_{B'.ABC}} + {V_{C.B'C'D'}} + {V_{D'.ACD}} + {V_{A.A'B'D'}}} \right).\)
Lưu ý: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGcbGaai4jaiaac6cacaWGbbGaamOqaiaadoeaaeqaaOGa % eyypa0JaamOvamaaBaaaleaacaWGdbGaaiOlaiaadkeacaGGNaGaam % 4qaiaacEcacaWGebGaai4jaaqabaGccqGH9aqpcaWGwbWaaSbaaSqa % aiaadseacaGGNaGaaiOlaiaadgeacaWGdbGaamiraaqabaGccqGH9a % qpcaWGwbWaaSbaaSqaaiaadgeacaGGUaGaamyqaiaacEcacaWGcbGa % ai4jaiaadseacaGGNaaabeaakiabg2da9maalaaabaGaaGymaaqaai % aaiodaaaGaamOvamaaBaaaleaacaWGbbGaamOqaiaadoeacaGGUaGa % amyqaiaacEcacaWGcbGaai4jaiaadoeacaGGNaaabeaakiabg2da9m % aalaaabaGaaGymaaqaaiaaiodaaaGaaiOlamaalaaabaGaamOvaaqa % aiaaikdaaaGaeyO0H4TaamOvamaaBaaaleaacaWGbbGaam4qaiaadk % eacaGGNaGaamiraiaacEcaaeqaaOGaeyypa0JaamOvaiabgkHiTiaa % isdacaGGUaWaaSaaaeaacaWGwbaabaGaaGOnaaaacqGH9aqpdaWcaa % qaaiaadAfaaeaacaaIZaaaaiaac6caaaa!72EF! {V_{B'.ABC}} = {V_{C.B'C'D'}} = {V_{D'.ACD}} = {V_{A.A'B'D'}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{1}{3}.\frac{V}{2} \Rightarrow {V_{ACB'D'}} = V - 4.\frac{V}{6} = \frac{V}{3}.\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 1