Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a , tam giác SBA vuông tại B , tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaaic % dacqGHWcaSaaa!395A! 60^\circ\) . Tính thể tích khối chóp S.ABC theo a .
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi D là hình chiếu của S lên mặt phẳng (ABC) , suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaads % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaaGaayjkaiaawMca % aaaa!3D24! SD \bot \left( {ABC} \right)\)
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaads % eacqGHLkIxcaWGbbGaamOqaaaa!3AD3! SD \bot AB\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadk % eacqGHLkIxcaWGbbGaamOqaiaaykW7caGGOaGaam4zaiaadshacaGG % Paaaaa!3F9A! SB \bot AB\,(gt)\), suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGHLkIxdaqadaqaaiaadofacaWGcbGaamiraaGaayjkaiaawMca % aiabgkDiElaadkeacaWGbbGaeyyPI4LaamOqaiaadseaaaa!444E! AB \bot \left( {SBD} \right) \Rightarrow BA \bot BD\)
Tương tự \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado % eacqGHLkIxcaWGebGaam4qaaaa!3AC4! AC \bot DC\) có hay tam giác ACD vuông ở C.
Dễ thấy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam % 4uaiaadkeacaWGbbGaeyypa0JaeuiLdqKaam4uaiaadoeacaWGbbaa % aa!3E91! \Delta SBA = \Delta SCA\) (cạnh huyền và cạnh góc vuông), suy ra SB=SC . Từ đó ta chứng minh được \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam % 4uaiaadkeacaWGebGaeyypa0JaeuiLdqKaam4uaiaadoeacaWGebaa % aa!3E97! \Delta SBD = \Delta SCD\) nên cũng có DB=DC.
Vậy DA là đường trung trực của BC , nên cũng là đường phân giác của góc \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca % WGcbGaamyqaiaadoeaaiaawkWaaaaa!390B! \widehat {BAC}\)
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca % WGebGaamyqaiaadoeaaiaawkWaaiabg2da9iaaiodacaaIWaGaeyiS % aalaaa!3D76! \widehat {DAC} = 30^\circ \), suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaado % eacqGH9aqpdaWcaaqaaiaadggaaeaadaGcaaqaaiaaiodaaSqabaaa % aaaa!3A59! DC = \frac{a}{{\sqrt 3 }}\) . Ngoài ra góc giữa hai mặt phẳng (SAB) và (ABC) là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaca % WGtbGaamOqaiaadseaaiaawkWaaiabg2da9iaaiAdacaaIWaGaeyiS % aalaaa!3D8A! \widehat {SBD} = 60^\circ\), suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg % gacaGGUbWaaecaaeaacaWGtbGaamOqaiaadseaaiaawkWaaiabg2da % 9maalaaabaGaam4uaiaadseaaeaacaWGcbGaamiraaaacqGHshI3ca % WGtbGaamiraiabg2da9iaadkeacaWGebGaciiDaiaacggacaGGUbWa % aecaaeaacaWGtbGaamOqaiaadseaaiaawkWaaiabg2da9maalaaaba % GaamyyaaqaamaakaaabaGaaG4maaWcbeaaaaGccaGGUaWaaOaaaeaa % caaIZaaaleqaaOGaeyypa0Jaamyyaaaa!5323! \tan \widehat {SBD} = \frac{{SD}}{{BD}} \Rightarrow SD = BD\tan \widehat {SBD} = \frac{a}{{\sqrt 3 }}.\sqrt 3 = a\)
Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGtbGaaiOlaiaadgeacaWGcbGaam4qaaqabaGccqGH9aqp % daWcaaqaaiaaigdaaeaacaaIZaaaaiaac6cacaWGtbWaaSbaaSqaai % abfs5aejaadgeacaWGcbGaam4qaaqabaGccaGGUaGaam4uaiaadsea % cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiaac6cadaWcaaqaai % aadggadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaaiodaaSqabaaa % keaacaaI0aaaaiaac6cacaWGHbGaeyypa0ZaaSaaaeaacaWGHbWaaW % baaSqabeaacaaIZaaaaOWaaOaaaeaacaaIZaaaleqaaaGcbaGaaGym % aiaaikdaaaaaaa!52EA! {V_{S.ABC}} = \frac{1}{3}.{S_{\Delta ABC}}.SD = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{{12}}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 1