Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) đáy ABCD là hình thang vuông tại A và B có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaWGHbGaaiilaiaabccacaWGbbGaamiraiabg2da9iaa % iodacaWGHbGaaiilaiaabccacaWGcbGaam4qaiabg2da9iaadggaca % GGUaaaaa!4477! AB = a,{\rm{ }}AD = 3a,{\rm{ }}BC = a.\) Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaOGaaiilaaaa!3B0F! SA = a\sqrt 3 ,\) tính thể tích khối chóp S.BCD theo a
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGtbGaaiOlaiaadkeacaWGdbGaamiraaqabaGccqGH9aqp % daWcaaqaaiaaigdaaeaacaaIZaaaaiaadofacaWGbbGaaiOlaiaado % fadaWgaaWcbaGaamOqaiaadoeacaWGebaabeaakiaac6caaaa!43DC! {V_{S.BCD}} = \frac{1}{3}SA.{S_{BCD}}.\)
Lại có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaWGcbGaam4qaiaadseaaeqaaOGaeyypa0Jaam4uamaaBaaa % leaacaWGbbGaamOqaiaadoeacaWGebaabeaakiabgkHiTiaadofada % WgaaWcbaGaamyqaiaadkeacaWGebaabeaaaaa!42D2! {S_{BCD}} = {S_{ABCD}} - {S_{ABD}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaaaacaWGbbGaamOqaiaac6cadaqadaqa % aiaadgeacaWGebGaey4kaSIaamOqaiaadoeaaiaawIcacaGLPaaacq % GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaadgeacaWGcbGaaiOl % aiaadgeacaWGebaaaa!468A! = \frac{1}{2}AB.\left( {AD + BC} \right) - \frac{1}{2}AB.AD\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaaaacaWGbbGaamOqaiaac6cacaWGcbGa % am4qaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamyyamaaCa % aaleqabaGaaGOmaaaakiaac6caaaa!4166! = \frac{1}{2}AB.BC = \frac{1}{2}{a^2}.\)
Mà \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaOGaeyO0H4TaamOv % amaaBaaaleaacaWGtbGaaiOlaiaadkeacaWGdbGaamiraaqabaGccq % GH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiaadggadaGcaaqaaiaa % iodaaSqabaGccaGGUaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYa % aaaaGcbaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadggadaahaaWcbeqa % aiaaiodaaaGcdaGcaaqaaiaaiodaaSqabaaakeaacaaI2aaaaiaac6 % caaaa!4EA0! SA = a\sqrt 3 \Rightarrow {V_{S.BCD}} = \frac{1}{3}a\sqrt 3 .\frac{{{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}.\)
Nhận xét: Nếu đề bài bỏ giả thiết AD = 3a thì sẽ giải như sau:
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGtbGaaiOlaiaadkeacaWGdbGaamiraaqabaGccqGH9aqp % daWcaaqaaiaaigdaaeaacaaIZaaaaiaadofacaWGbbGaaiOlaiaado % fadaWgaaWcbaGaamOqaiaadoeacaWGebaabeaakiabg2da9maalaaa % baGaaGymaaqaaiaaiodaaaGaam4uaiaadgeacaGGUaWaaSaaaeaaca % aIXaaabaGaaGOmaaaacaWGKbWaaeWaaeaacaWGebGaaiilaiaadkea % caWGdbaacaGLOaGaayzkaaGaaiOlaiaadkeacaWGdbaaaa!514A! {V_{S.BCD}} = \frac{1}{3}SA.{S_{BCD}} = \frac{1}{3}SA.\frac{1}{2}d\left( {D,BC} \right).BC\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOnaaaacaWGtbGaamyqaiaac6cacaWGbbGa % amOqaiaac6cacaWGcbGaam4qaiabg2da9maalaaabaGaamyyamaaCa % aaleqabaGaaG4maaaakmaakaaabaGaaG4maaWcbeaaaOqaaiaaiAda % aaaaaa!4334! = \frac{1}{6}SA.AB.BC = \frac{{{a^3}\sqrt 3 }}{6}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 1