Cho lăng trụ tam giác đều có cạnh đáy bằng a cạnh bên bằng b. Tính thể tích của khối cầu đi qua các đỉnh của lăng trụ.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi I;I' lần lượt là tâm hai đáy, O là trung điểm của II'. Khi đó ta có O là tâm mặt cầu ngoại tiếp lăng trụ.
Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadM % eacqGH9aqpdaWcaaqaaiaadggadaGcaaqaaiaaiodaaSqabaaakeaa % caaIZaaaaiaacYcacaaMc8Uaamysaiaad+eacqGH9aqpdaWcaaqaai % aadkgaaeaacaaIYaaaaaaa!41B9! AI = \frac{{a\sqrt 3 }}{3},\,IO = \frac{b}{2}\) suy ra bán kính mặt cầu ngoại tiếp lăng trụ là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 % da9maakaaabaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGc % baGaaG4maaaacqGHRaWkdaWcaaqaaiaadkgadaahaaWcbeqaaiaaik % daaaaakeaacaaI0aaaaaWcbeaakiabg2da9maalaaabaGaaGymaaqa % aiaaikdadaGcaaqaaiaaiodaaSqabaaaaOWaaOaaaeaacaaI0aGaam % yyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWGIbWaaWba % aSqabeaacaaIYaaaaaqabaaaaa!47AA! R = \sqrt {\frac{{{a^2}}}{3} + \frac{{{b^2}}}{4}} = \frac{1}{{2\sqrt 3 }}\sqrt {4{a^2} + 3{b^2}} \)
Vậy: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaadaqadaqaaiaad+eacaGG7aGaaGPaVlaadkfaaiaawIcacaGL % PaaaaeqaaOGaeyypa0ZaaSaaaeaacaaI0aaabaGaaG4maaaacqaHap % aCcaWGsbWaaWbaaSqabeaacaaIZaaaaOGaeyypa0ZaaSaaaeaacqaH % apaCaeaacaaIXaGaaGioamaakaaabaGaaG4maaWcbeaaaaGcdaGcaa % qaamaabmaabaGaaGinaiaadggadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIZaGaamOyamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawM % caamaaCaaaleqabaGaaG4maaaaaeqaaOGaaiOlaaaa!511D! {V_{\left( {O;\,R} \right)}} = \frac{4}{3}\pi {R^3} = \frac{\pi }{{18\sqrt 3 }}\sqrt {{{\left( {4{a^2} + 3{b^2}} \right)}^3}} .\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 1