Cho hình chóp \(S.ABCD\) có đáy là hình thang cạnh \(AB=2a,AD=DC=CB=a,SA=3a\) và \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \(AC\) và \(SB\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M\) là trung điềm \(AB,\,H\) là trung điểm \(MB\) thì dễ thấy \(MBC\) là tam giác đều và \(CH=\frac{a\sqrt{3}}{2}\) và \(AH=\frac{3a}{2}\). Chọn \(a=2\) và dựng hệ trục \(Axyz\) như hình vẽ, ta có: \(C(\sqrt{3};3;0),B(0;4;0),S(0;0;6)\) suy ra \(\overrightarrow{AC}=(\sqrt{3};3;0),\overrightarrow{SB}=(0;4;-6),\overrightarrow{AS}=(0;0;6)\) và \(\left[ \overrightarrow{AC},\overrightarrow{SB} \right]=(-18;6\sqrt{3};4\sqrt{3})\Rightarrow \left[ \overrightarrow{AC},\overrightarrow{SB} \right].\overrightarrow{AS}=24\sqrt{3}\).
Khi đó \(d(AC,SB)=\frac{\left| \left[ \overrightarrow{AC},\overrightarrow{SB} \right].\overrightarrow{AS} \right|}{\left| [\overrightarrow{AC},\overrightarrow{SB}] \right|}=\frac{3\sqrt{10}}{5}\Rightarrow d=\frac{3a\sqrt{10}}{10}\).
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Võ Thị Sáu