Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = a (tham khảo hình vẽ bên dưới). Góc giữa hai mặt phẳng (SAB) và (SCD) bằng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left\{ \begin{align} AB\subset \left( SAB \right) \\ CD\subset (SCD) \\ AB//CD \\ S\in \left( SAB \right)\cap (SCD) \\ \end{align} \right.\)
Gọi \(d=\left( SAB \right)\cap (SCD)\Rightarrow \)d là đường thẳng qua S và song song với AB, CD.
Ta có: \(\left\{ \begin{align} AD\bot AB \\ SA\bot AB \\ \end{align} \right.\Rightarrow AB\bot (SAD)\)
Mà \(d//AB\Rightarrow d\bot (SAD)\)
\(\left\{ \begin{align} \left( SAD \right)\cap (SAB)=SA \\ (SAD)\cap (SCD)=SD \\ \end{align} \right.\Rightarrow \left( \widehat{(SAB);(SCD)} \right)=\left( \widehat{SA;SD} \right)=\widehat{ASD}\)
Tam giác SAD vuông tại A có SA = AD = a \(\Rightarrow \Delta SAD\)vuông cân tại A \(\Rightarrow \widehat{ASD}={{45}^{0}}\Rightarrow \left( \widehat{(SAB);(SCD)} \right)={{45}^{0}}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Nam Tiền Hải