Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với cạnh \(AD=2CD.\) Biết hai mặt \(\left( SAC \right),\left( SBD \right)\) cùng vuông góc với mặt đáy và đoạn \(BD=6;\) góc giữa \(\left( SCD \right)\) và mặt đáy bằng \({{60}^{0}}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O\) là giao điểm của \(AC\) và \(BD;E\) là trung điểm của \(CD\)
\(\left\{ \begin{array}{l} \left( {SAC} \right) \bot \left( {ABCD} \right)\\ \left( {SBD} \right) \bot \left( {ABCD} \right)\\ \left( {SAC} \right) \cap \left( {SBD} \right) = SO \end{array} \right. \Rightarrow SO \bot \left( {ABCD} \right).\)
Ta có \(\left\{ \begin{array}{l} OE \bot CD\\ SO \bot CD \end{array} \right. \Rightarrow CD \bot \left( {SOE} \right) \Rightarrow \left( {\widehat {\left( {SCD} \right);\left( {ABCD} \right)}} \right) = \widehat {SEO} = {60^0}\)
Đặt \(AD=2CD=2x\)
\(B{{D}^{2}}=A{{B}^{2}}+A{{D}^{2}}=5{{x}^{2}}\Leftrightarrow 5{{x}^{2}}=36\Rightarrow x=\frac{6\sqrt{5}}{5}\)
\(\Rightarrow AD=\frac{12\sqrt{5}}{5};CD=\frac{6\sqrt{5}}{5}\Rightarrow {{S}_{ABCD}}=\frac{72}{5}\)
\(OE=\frac{AD}{2}=\frac{6\sqrt{5}}{5}\)
Trong tam giác vuông \(SOE\) có \(SO=OE.\tan {{60}^{0}}=\frac{6\sqrt{15}}{5}.\)
\(\Rightarrow {{V}_{S.ABCD}}=\frac{1}{3}.SO.{{S}_{ABCD}}=\frac{144\sqrt{15}}{25}\)
\({{V}_{S.MNCD}}={{V}_{S.MCD}}+{{V}_{S.MNC}}\)
\(\frac{{{V}_{S.MCD}}}{{{V}_{S.ACD}}}=\frac{SM}{SA}=\frac{1}{2};\frac{{{V}_{S.MNC}}}{{{V}_{S.ABC}}}=\frac{SM}{SA}.\frac{SN}{SB}=\frac{1}{4}\)
\(\Rightarrow {{V}_{S.MNCD}}=\frac{3}{4}.{{V}_{S.ABC}}=\frac{3}{8}.{{V}_{S.ABCD}}\)
\({{V}_{ABCDMN}}={{V}_{S.ABCD}}-{{V}_{S.MNCD}}=\frac{5}{8}.{{V}_{S.ABCD}}=\frac{18\sqrt{15}}{5}.\)