ADMICRO
Cho các số thực dương \(x,y,z\) và thỏa mãn \(x+y+z=3.\) Biểu thức \(P={{x}^{4}}+{{y}^{4}}+8{{z}^{4}}\) đạt GTNN bằng \(\frac{a}{b},\) trong đó \(a,b\) là các số tự nhiên dương, \(\frac{a}{b}\) là phân số tối giản. Tính \(a-b.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(\begin{array}{l} 9 = {(x + y + \frac{1}{{\sqrt 2 }}.\sqrt 2 .z)^2} \le \frac{5}{2}({x^2} + {y^2} + 2{z^2}) = \frac{5}{2}({x^2} + {y^2} + \frac{1}{{\sqrt 2 }}.2.\sqrt 2 .{z^2}) \le \frac{5}{2}.\sqrt {\frac{5}{2}.({x^4} + {y^4} + 8{z^4})} \\ = > {x^4} + {y^4} + 8{z^4} \ge {(9:\frac{5}{2})^2}:\frac{5}{2} = \frac{{648}}{{125}} \end{array}\)
Vậy GTNN của P là \(\frac{a}{b}=\frac{648}{125}=>a-b=523\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK