Một hình thang cân \(ABCD\) có đáy nhỏ \(AB=1,\) đáy lớn \(CD=3,\) cạnh bên \(BC=AD=\sqrt{2}.\) Cho hình thang \(ABCD\) quay quanh \(AB\) ta được khối nó xoay có thể tích là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKhi quay hình thang quanh cạnh \(AB\) ta được khối tròn xoay.
Kẻ các đường cao \(AH,BK.\) Khi đó: \(HK=AB=1\Rightarrow CK=DK=1\)
Áp dụng pitago trong các tam giác vuông \(AHC,BKD\) ta được: \(AH=BK=1\)
Xét khối trụ có đường cao \(CD=3,\) bán kính \(AH=1.\) Khi đó thể tích khối trụ: \({{V}_{\left( T \right)}}=\pi .A{{H}^{2}}.CD=3\pi \)
Xét khối nón có đường sinh \(AD=\sqrt{2},\) bán kính \(AH=1,\) đường cao \(DH=1.\) Khi đó thể tích khối nón \({{V}_{\left( N \right)}}=\frac{1}{3}.\pi .A{{H}^{2}}.DH=\frac{\pi }{3}\)
Thể tích khối tròn xoay: \(V={{V}_{\left( T \right)}}-2{{V}_{\left( N \right)}}=\frac{7\pi }{3}\)