Cho hình chóp \(S.ABCD\) có đáy là hình thang có \(AD//BC,M\) là điểm di động trong hình thang \(ABCD.\) Qua \(M\) kẻ đường thẳng song song với \(SA\) và \(SB\) lần lượt cắt các mặt \(\left( SBC \right)\) và \(\left( SAD \right)\) tại \(N\) và \(P.\) Cho \(SA=a,SB=b.\) Tìm giá trị lớn nhất của biểu thức \(T=M{{N}^{2}}.MP.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi giao điểm của BM với AD là J, giao điểm của AM với BC là I
Gọi độ dài MN là x, độ dài MP là y.
Ta có: \(\left\{ \begin{array}{l} \frac{{MN}}{{SA}} = \frac{{IM}}{{IA}}\\ \frac{{MP}}{{SB}} = \frac{{JM}}{{JB}} = \frac{{AM}}{{AI}} \end{array} \right. = > \frac{x}{a} + \frac{y}{b} = 1\)
\(=>P=(\frac{x}{2a}.\frac{x}{2a}.\frac{y}{b}).\frac{4{{a}^{2}}}{b}\le \frac{{{(\frac{x}{2a}+\frac{y}{2a}+\frac{y}{b})}^{3}}}{{{3}^{3}}}\frac{4{{a}^{2}}}{b}=\frac{1}{27}.\frac{4{{a}^{2}}}{b}=\frac{4{{a}^{2}}b}{27}\)(BĐT Cauchy)