Cho hàm số \(y=\frac{x+1}{x-1}\) có đồ thị là (C). Gọi \(M\left( {{x}_{M}};{{y}_{M}} \right)\) là một điểm bất kỳ trên (C). Khi tổng khoảng cách từ M đến hai trục tọa độ là nhỏ nhất, tính tổng \({{x}_{M}}+{{y}_{M}}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(M\left( a;1+\frac{2}{a-1} \right)\in \left( C \right),d\left( M,Ox \right)=\left| 1+\frac{2}{a-1} \right|,d\left( M,Oy \right)=\left| a \right|.\)
Ta thấy khi \(M\left( -1;0 \right)\in \left( C \right)\Rightarrow d=1.\) Do đó tổng khoảng cách từ M đến hai trục tọa độ nhỏ hơn hoặc bằng 1. Từ đó: \(\left\{ \begin{align} & \left| a \right|<1 \\ & \left| 1+\frac{2}{a-1} \right|<1 \\ \end{align} \right.\Leftrightarrow -1<a<0.\)
Suy ra: \(d\left( M,Ox \right)+d\left( M,Oy \right)=\left| 1+\frac{2}{a-1} \right|+\left| a \right|=-a-1-\frac{2}{a-1}=1-a+\frac{2}{1-a}-2\ge 2\sqrt{\left( 1-a \right).\frac{2}{1-a}}-2=2\sqrt{2}-2.\)
Dấu ''='' xảy ra khi \(1-a=\frac{2}{1-a}\Leftrightarrow {{\left( 1-a \right)}^{2}}=2\Leftrightarrow \left[ \begin{align} & a-1=\sqrt{2} \\ & a-1=-\sqrt{2} \\ \end{align} \right.\Leftrightarrow a=1-\sqrt{2}.\)
Vậy \({{x}_{M}}+{{y}_{M}}=2-2\sqrt{2}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Huỳnh Thúc Kháng