Cho \(a\) và \(b\) là các số thực dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục tung mà cắt các đồ thị \(y={{\log }_{a}}x,y={{\log }_{b}}x\) và trục hoành lần lượt tại \(A,B\) và \(H\) phân biệt ta đều có \(3HA=4HB\) (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: Gọi \(H\left( {{x}_{0}};0 \right).\) Khi đó \(A\left( {{x}_{0}};{{\log }_{a}}{{x}_{0}} \right);B\left( {{x}_{0}};{{\log }_{b}}{{x}_{0}} \right)\)
\(AH=\left| {{\log }_{a}}{{x}_{0}} \right|;BH=\left| {{\log }_{b}}{{x}_{0}} \right|\)
Do \(3HA=4HB\Leftrightarrow 3\left| {{\log }_{a}}{{x}_{0}} \right|=4\left| {{\log }_{b}}{{x}_{0}} \right|\)
Dựa vào đồ thị ta thấy: \(3\left| {{\log }_{a}}{{x}_{0}} \right|=4\left| {{\log }_{b}}{{x}_{0}} \right|\Leftrightarrow 3{{\log }_{a}}{{x}_{0}}=-4{{\log }_{b}}{{x}_{0}}\)
Đặt \(3{{\log }_{a}}{{x}_{0}}=-4{{\log }_{b}}{{x}_{0}}=t.\) Ta có
\(3{\log _a}{x_0} = - 4{\log _b}{x_0} = t \Leftrightarrow \left\{ \begin{array}{l} {\log _a}{x_0} = \frac{t}{3}\\ {\log _b}{x_0} = - \frac{t}{4} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^{\frac{t}{3}}} = {x_0}\\ {b^{ - \frac{t}{4}}} = {x_0} \end{array} \right.\)
\(\Leftrightarrow {{a}^{\frac{t}{3}}}={{b}^{-\frac{t}{4}}}\Leftrightarrow {{a}^{\frac{t}{3}}}=\frac{1}{{{b}^{\frac{t}{4}}}}\Leftrightarrow {{a}^{\frac{t}{3}}}.{{b}^{\frac{t}{4}}}=1\Leftrightarrow {{a}^{4}}.{{b}^{3}}=1.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Quế Võ 1 lần 2