Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng của S qua O. Thể tích khối chóp S’.MNPQ bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \({G_1},{G_2},{G_3},{G_4}\) lần lượt là trọng tâm \(\Delta SAB,\Delta SBC,\Delta SCD,\Delta SDA\).
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC,CD,DA
Ta có \({S_{MNPQ}} = 4{S_{{G_1}{G_2}{G_3}{G_4}}} = 4.\frac{4}{9}{S_{EFGH}} = 4.\frac{4}{9}.\frac{1}{2}EG.HF = \frac{{8{a^2}}}{9}\).
\(\begin{array}{l}
d\left( {S',\left( {MNPQ} \right)} \right) = d\left( {S',\left( {ABCD} \right)} \right) + d\left( {O,\left( {MNPQ} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = d\left( {S,\left( {ABCD} \right)} \right) + 2d\left( {O,\left( {{G_1}{G_2}{G_3}{G_4}} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = d\left( {S,\left( {ABCD} \right)} \right) + \frac{2}{3}d\left( {S,\left( {ABCD} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{5}{3}d\left( {S,\left( {ABCD} \right)} \right) = \frac{{5a\sqrt {14} }}{6}
\end{array}\)
Vậy \({V_{S'.MNPQ}} = \frac{1}{3} \cdot \frac{{5a\sqrt {14} }}{6} \cdot \frac{{8{a^2}}}{9} = \frac{{20{a^3}\sqrt {14} }}{{81}}\).
Đề thi tốt nghiệp THPT môn Toán năm 2020
Bộ GD&ĐT mã đề 123