Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \({z^2} + {(\overline z )^2} = 0\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) ta có :
\(\begin{array}{l}{z^2} + {\left( {\overline z } \right)^2} = 0 \Leftrightarrow {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 0\\ \Leftrightarrow {a^2} + 2abi - {b^2} + {a^2} - 2abi - {b^2} = 0\\ \Leftrightarrow 2{a^2} - 2{b^2} = 0 \Leftrightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\a = - b\end{array} \right.\end{array}\)
Vậy tập hợp các điểm biểu diễn số phức thỏa mãn bài toán là các đường thẳng \(y = x\) và \(y = - x\) chính là các đường phân giác của các góc phần tư.
Chọn D
Đề thi HK2 môn Toán 12 năm 2021-2022
Trường THPT Ngô Gia Tự