Một người gửi 500 triệu đồng vào một ngân hàng theo kì hạn 1 năm với lãi suất \(8,6\% /\)năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn ba lần số tiền ban đầu? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVới số tiền gửi ban đầu là \(A\), với thể thức lãi kép và lãi suất là \(x\% \)/ 1 năm, ta có:
Sau 1 năm, số tiền cả gốc và lãi nhận được là :
\({A_1} = A + A.x = A\left( {1 + x} \right)\)
Sau 2 năm, số tiền cả gốc và lãi nhận được là :
\({A_2} = {A_1} + {A_1}.x = {A_1}\left( {1 + x} \right) = A{\left( {1 + x} \right)^2}\)
……..
Sau \(n\) năm, số tiền cả gốc và lãi nhận được là \({A_n} = A{\left( {1 + x} \right)^n}\)
Thay \(A = 500\) triệu đồng, \(x = 8,6\% /\)năm và theo giả thiết số tiền nhận được sau \(n\) năm nhiều hơn 3 lần số tiền ban đầu ta có:
\(\begin{array}{l}{A_n} > 3A\\ \Leftrightarrow A.{\left( {1 + 8,6\% } \right)^n} > 3A\\ \Leftrightarrow {\left( {1 + 8,6\% } \right)^n} > 3\\ \Leftrightarrow n > {\log _{\left( {1 + 8,6\% } \right)}}3\\ \Rightarrow n > 13,31\end{array}\)
Do đó, sau ít nhất 14 năm thì số tiền nhận được nhiều hơn 3 lần số tiền gửi ban đầu.
Đáp án D
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Lý Tự Trọng