Cho hàm số \(y = \frac{{ax + 1}}{{bx - 2}}.\) Xác định a và b để đồ thị hàm số nhận đường thẳng x=1 là tiệm cận đứng và đường thẳng \(y=\frac{1}{2}\) làm tiệm cận ngang.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\,(c \ne 0;ad - bc \ne 0)\) có tiệm cận đứng là đường thẳng \(x = {x_0}\) với \(x_0\) thỏa:
\(\left\{ \begin{array}{l} c{x_0} + d = 0\\ a{x_0} + b \ne 0 \end{array} \right..\)
Tiệm cận ngang là đường thẳng \(y = \frac{a}{c}.\)
Suy ra:
Tiệm cận đứng \(x = \frac{2}{b} = 1 \Rightarrow b = 2.\)
Tiệm cận ngang \(y = \frac{a}{b} = \frac{a}{2} = \frac{1}{2} \Rightarrow a = 1.\)
Thử lại với a = 1, b = 2 đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1, tiệm cận ngang là đường thẳng \(y = \frac{1}{2}.\)
Chọn D
Đề thi giữa HK1 môn Toán 12 năm 2022-2023
Trường THPT Trần Quý Cáp