ADMICRO
Cho hai số thực dương \(a\) và \(b\) thỏa \(a \ne 1 \ne {a^2}b.\) Giá trị của biểu thức \(2 - \dfrac{3}{{2 + {{\log }_a}b}}\) bằng
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có \(a > 0,\,\,b > 0\) và \(a \ne 1 \ne {a^2}b\).
Vậy \(2 - \dfrac{3}{{2 + {{\log }_a}b}} = \dfrac{{1 + 2{{\log }_a}b}}{{2 + {{\log }_a}b}}\)\( = \dfrac{{{{\log }_a}a + {{\log }_a}{b^2}}}{{{{\log }_a}{a^2} + {{\log }_a}b}} = \dfrac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}\left( {{a^2}b} \right)}} = {\log _{\left( {{a^2}b} \right)}}\left( {a{b^2}} \right)\)
Đáp án B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Hoàng Hoa Thám
26/11/2024
75 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK