Nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 5}} + 3 = \dfrac{6}{{2 - x}}\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện \(x \ne 2\) và \(x \ne 5\)
Khử mẫu và biến đổi:
\( (x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)\)
\(\Leftrightarrow 4 - {x^2} + 3\left( {2x - {x^2} - 10 + 5x} \right) = 6x - 30\)
\( \Leftrightarrow 4{\rm{ - }}{x^2}{\rm{ - }}3{x^2} + 21x{\rm{ - }}30 = 6x{\rm{ - }}30\)
\(\Leftrightarrow 4{x^2}{\rm{ - }}15x{\rm{ - }}4 = 0\)
\(\Delta = {\left( { - 15} \right)^2} - 4.4.\left( { - 4} \right) = 289 > 0\)\( \Rightarrow \sqrt \Delta = 17\)
Phương trình có hai nghiệm \({x_1} = \dfrac{{15 + 17}}{8} = 4;\) \({x_2} = \dfrac{{15 - 17}}{8} = - \dfrac{1}{4}\)
Hai giái trị \({x_1};{x_2}\) đều thỏa mãn điều kiện của ẩn
Vậy phương trình có nghiệm \(x = 4;x = - \dfrac{1}{4}.\)